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Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER 15t/ 2" EXAMINATION (OLD SYLLABUS) — SUMMER - 2017

Subject Code: 110014

Subject Name: Calculus

Time:2:30 PM to 05:30 PM

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
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Find the Taylor’s series about x = 0 for f(x) =

Find the expansion of tan [x + 3 in ascending powers of x up to terms

in x* and find approximately the value of tan 43°
Does the series o=, (1 —e™™) converges ? Justify.
Evaluate:

ll,m g —1—x
x—=0 &

H E-Il-m ¥ tanx
I1.
. ﬂ[smx]

Determine whether the series Z;q“:lﬂ converges or diverges.
]

z
Find the radius and interval of convergence of the series
AR L)
Determine whether the series Z;zlﬁ converges or diverges.
Discuss the continuity of

flx,v) = ii%jji ; (x,5) # (0,0)

0 ; (x,v) = (0,0)

at (0,0).

Does the improper integral f: e ~**dx converge or diverge ? Justify.

Compute the four second order partial derivatives of
Flx,v) = xy* + 3x%e”,

x2 sin®

Evaluate 1™ {i— 1 )
x—=0
Find the maximum and minimum values of x + ¥ on the circle

x“t+y =4

Find the equation of the tangent plane to the sphere x* + y* + z* = 14

at the point (1,2,3).
-1 x5+y5

If u=cos - —— show that
xt+y
8% a%u 8% sinZusinu—4cosu
x¢— 1+ 2xy yir—=—
dx? + < Bxdy + < Ayt sinfu

Determine the intervals of increasing and decreasing for the function
flx)=x%—12x—5,

Evaluate [ [ (x+ 2y)dA4, where D is the region bounded by the
parabolas y = 2x*and y = 1+ x*.
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Q.5

Q.6

Q.7

(b)

1) The region between the curve ¥ = /x ; 0 < x < 4 and the x — axis is
revolved about the x — axis to generate a solid. Find its volume.

2) Find the maximum and minimum values of the function
flx) =x* +y® —3x — 12y + 20.

1) Evaluate
..rul .r;z(l + xy)dydx

2) Evaluate the
. wm pmg ¥ . . .
integral f~ J —,~dydx by reversing the order of integration.

(a) Trace the curve xy* = 4a*(2a — x); a > 0.

(b)

1) Evaluate the improper integral j'l'x x—lzdx.

2) Evaluate [7 f;“ ~* (x? + ¥*) dydx by changing into polar coordinates
where a = 0,

(@) Trace the curve r = a(l + cos8),

(b)

1) Evaluate f; _I“; f;[l + xyz) dxdydz.
2) Expand e*siny in powers of x and ¥ up to second order term.
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