Seat No.: Enrolment No			
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (OLD) - EXAMINATION – SUMMER 2017 Soldiest Condex 120002			
	Time: 10:30 AM to 01:30 PM Total Marks:		
Instructions:			. 70
1. Attempt all questions.			
 Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 			
Q.1	(a)	1) Solve $(e^{y} - ye^{x})dx + (xe^{y} - e^{x})dy = 0$	03
	(b)	2) Solve $y' + (x + 1)y = e^{x^2}y^3$, $y(0) = 0.5$	04 07
	(D)	Find the series solution of $y'' + y = 0$.	07
Q.2	(a)	Using the method of separation of variables solve $2\frac{\partial u}{\partial x} = \frac{\partial u}{\partial t} + u$, $u(x, 0) = 4e^{-3x}$.	07
	(b)	Find the series solution of the differential equation $3xy'' + 2y' + y = 0$	07
		OR	
	(b)	1) Solve $y''' + y' = 0$ 2) Solve $y''' + 3y'' + 3y' + y = 30e^{-x}$ by the method of undetermined	03 04
		coefficients.	04
Q.3	(a)		07
	(b)	Find the Fourier series of $f(x) = e^{-4x}$, $-\pi < x < \pi$, $f(x + 2\pi) = f(x)$. OR	07
Q.3	(a)	Find the Fourier series of $f(x) = x + \pi - \pi < x < \pi$ and $f(x + 2\pi) = f(x)$.	07
C	(b)	Find the Fourier series of $f(x) = \begin{cases} 2 & ; if -2 < x < 0 \\ 0 & ; if 0 < x < 2 \end{cases} p = 4$	07
		(0; if 0 < x < 2)	
Q.4	(a)	1) Show that $L\{sinat\} = \frac{a}{S^2 + a^2}$.	03
		2) Prove that if $L\{f(t)\} = F(S)$ then $L\{\frac{f(t)}{t}\} = \int_{S}^{\infty} F(S) dS$	04
	(b)	Evaluate	
		1) $L\{tsinat\}.$ 2) $L^{-1}\left\{\frac{15}{s^2+4s+2s}\right\}$	03 04
		2) $L = \{\frac{1}{(S^2 + 4S + 29)}\}$ OR	04
Q.4	(a)	Solve $y'' - y = t$, $y(0) = 1$, $y'(0) = 1$ by Laplace transforms method.	07
c	(b)	Evaluate	07
		1) $L\left\{\frac{1-\cos 2t}{t}\right\}$	
		2) $L^{-1}\left\{\frac{e^{-2\pi S}-e^{-8\pi S}}{(S^2+1)}\right\}$	
Q.5	(a)	1) Form the partial differential equation from	03
		$z = f(x + y + z, x^{2} + y^{2} + z^{2}) = 0.$ 2) Define (a) Beta function (b) Heaviside's function	04
	(b)	2) Define (a) Beta function (b) Heaviside's function. $\sum_{i=1}^{n} x_i < 1$	07
	()	Find the Fourier integral representation of the function $f(x) = \begin{cases} 1 & if x < 1 \\ 0 & if x > 1 \end{cases}$	
05	(a)	OR	02
Q.5	(a)	1) Solve $\frac{\partial^2 z}{\partial x^2} = z$.	03
		2) Form the partial differential equation from $z = xy + f(x^2 + y^2)$.	04
	(b)	1) Solve $p^2 + q^2 = x - y$	03
		2) Solve $(y + z)p + (z + x)q = x + y$	04
