GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (OLD) - EXAMINATION - SUMMER 2017

Subject Code: 150103

Subject Name: Aircraft Structure-II

Time: 02:30 PM to 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) State the difference between strain energy and complimenta	ry strain energy. 03
--	-----------------------------

- (b) Prove that, flexibility and stiffness are inversely proportional to each other. 05
- (C) Suggest different way of making the section free from torsion along with 03 suitable justification.
- Q.2 (a) Analyze the beam as shown in fig.1 using Stiffness Matrix Method. Take E = 07210 x 10³ N/mm² and I = 2.2 x 10⁸ mm⁴.
 - (b) Find the support reaction for a Frame as shown in fig.2 using Stiffness Matrix 07 Method if the rotation at joint 'B' is 0.000060 rad clockwise. Neglect the axial deformation in the member. Take $E = 200 \times 10^3 \text{ N/mm}^2$ and $I = 80 \times 10^3 \text{ mm}^4$.

- (b) Obtain the global stiffness matrix for a single truss member by showing proper 07 derivation.
- Q.3 (a) State the difference between Stiffness and Flexibility Methods of Structural 04 Analysis.
 - (b) A 5 m long simply supported beam is subjected to a u.d.l. of 12 kN/m intensity 10 throughout the length of a beam. Find the support reaction using Flexibility Matrix Method.

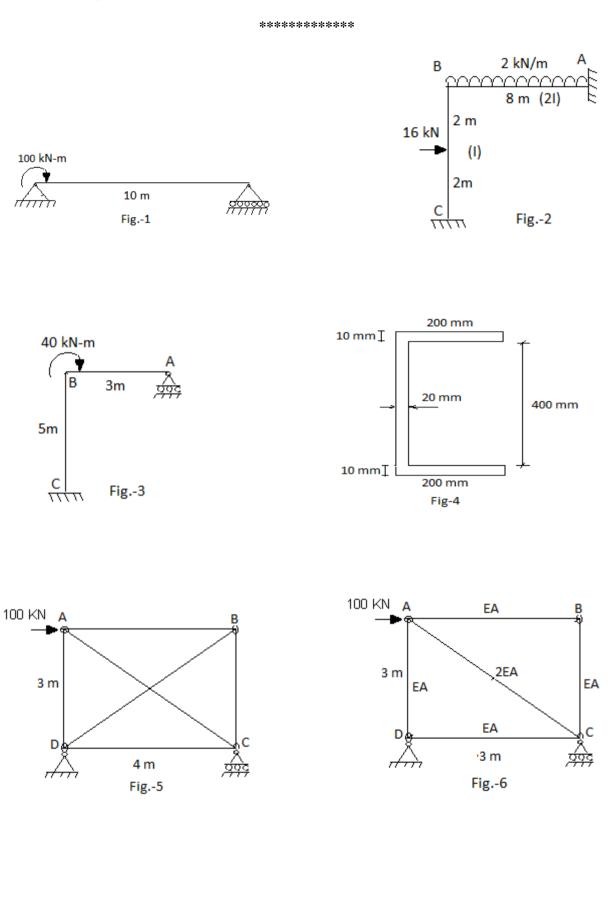
OR

- **Q.3** (a) Enlist the properties of Stiffness Matrix.
 - (b) Find the support reaction for a frame as shown in fig.-3 using Flexibility Matrix 10 Method.
- Q.4 (a) State the difference between symmetrical and Unsymmetrical Bending. 04
 - (b) Locate the Shear Centre of a section as shown in fig.-4. Also draw the shear 10 flow and shear stress distribution diagram.

OR

- Q.4 (a) Derive the equation to locate the Neutral Axis of the section subjected to 07 unsymmetrical bending.
 - (b) At a point in a body subjected to a three dimensional forces, the state of stress 07 is define as $\sigma_{xx} = 200 \text{ N/mm}^2$, $\sigma_{yy} = -100 \text{ N/mm}^2$, $\sigma_{zz} = -100 \text{ N/mm}^2$ and the shear stresses $T_{xy} = T_{yz} = T_{zx} = 200 \text{ N/mm}^2$. Compute the normal, Shearing and Resultant stresses on a plane that is equally inclined to all the three principal axes.
- Q.5 (a) Derive an equation of a Castiglione's force theorem $F = \partial U/\partial \Delta$ with usual 07 notation.
 - (b) Find the internal forces in a truss member as shown in Fig.-5 using 07 Castiglione's theorem. All the members have same cross sectional areas.

OR


Q.5 (a) Explain Theorem of least work. Explain its application in structural analysis by 07 giving suitable example.

Date: 01/05/2017

1

04

(b) For a truss as shown in fig.-6, determine the horizontal deflection at point 'B' 07 using any suitable method. Take $A = 0.001 \text{ m}^2$, $E = 2 \times 10^5 \text{ N/m}^2$.

