Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (OLD) - EXAMINATION - SUMMER 2017

Subject Code: 150303 Date: 01)5/2017	
Ti	ime: struct		: 70
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Explain some Useful signal Models in detail. Explain Power and Energy of the signal with example.	07 07
Q.2	(a)	Determine whether the following systems are Linear or Nonlinear, Time variant or Time Invariant, i) $dy(t)/dt + y(t) = x(t)$	07
	(b)	i) $x(t) = u(t) - u(t-2) + \delta(n+2)$ ii) $x(n)=u(n-1) + u(-n-2) + \delta(n)$	07
	(b)	OR Determine whether the following systems are Linear or Nonlinear i) $y(n) = x(n^2)$ ii) $y(n) = nx^2(n)$	07
Q.3	(a)	Define Zero-State Response of the system. How to find Zero-State Response of Discrete time systems?	07
	(b)	Find the Unit Impulse response of the system $y(n)-4y(n-1)+4y(n-2)=2x(n)$. OR	07
Q.3	(a) (b)	What is Unit Impulse response? How to find Unit Impulse response of system? Write short note on System Stability.	07 07
Q.4	(a) (b)	Explain Convolution Integral with example. Find $y_o(t)$, the Zero-Input component of the response for an LTIC system described by the following differential equation: $(D^2 + 4D + 4) \ y(t) = (D+5) \ x(t)$ When initial conditions are $y_0(0) = 2$ and $\mathring{y}_o(0) = -3$. \mathbf{OR}	07 07
Q.4	(a)	Write short note on Amplitude Modulation.	07
~.	(b)	Find z-transform and sketch corresponding ROC for the Sequences: $x(n) = [a^n + a^{-n}] u(n)$.	07
Q.5	(a)	Write properties of Discrete Fourier transform.	07
	(b)	Find x(n) for the given $X(z) = 10z/(z-1)(z-2)$. OR	07
Q.5	(a)	Explain Correlation and its Application in Signal Detection.	07
-	(b)	Compute the Fourier transform of $x(n)=(a)^{-n}u(-n-1)$	07
