Seat No.:		.: Enrolment No		
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (OLD) - EXAMINATION – SUMMER 2017 Subject Code: 150605 Date: 05 Subject Name: Structural Analysis - III			5/05/2017 Iarks: 70	
Ins	2.	ions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Determine the support reactions at B & C of a beam as shown in fig.1 by flexibility method, if support B sinks by 25 mm. Take $EI = 3800 \text{ kN-m}^2$	07	
	(b)	Determine the support moments of a beam as shown in fig.2 by Stiffness method. Take EI = constant	07	
Q.2	(a) (b)	Explain technical aspects of difference between curved beam and usual beam. Determine the support reactions at C of a frame as shown in fig.3 by flexibility method. Take EI = constant	07 07	
		OR		
	(b)	Explain type of domes with neat sketches and state their uses.	07	
Q.3	(a)(b)	Two wooden strips of 40 mm width x 200 mm length are placed in such a way that it forms a shape of PLUS sign. Determine shape factor. Find collapse load of fixed beam having length "L" and subjected to central Point load "W" by static method and kinematic method.	07 07	
		OR		
Q.3	(a)	Find the shape factor of T-section having flange dimensions 120 mm x 10 mm and web dimensions 150 mm x 10 mm.	07	
	(b)	Find collapse load of fixed beam having length "L" and subjected to point load "W" acting at a distance "a" from left support and distance "b" from right support by static method and kinematic method.	07	
Q.4	(a)	Find the deflection at free end of quarter circular beam in plan, if it is loaded by point load "W" at mid span, acting vertically downward.	07	
	(b)	A beam circular in plan has radius of 8 m and is supported at equally spaced 8 columns. It is loaded by UDL of 40 kN/m. Calculate the maximum values of bending moment, shear force and torsional moment. OR	07	
Q.4	(a)	A beam quarter circular in plan with both end fixed has radius of 5m. The beam carries a udl of 30 kN/m . Draw shear force diagram. Take $GJ = 0.8EI$	07	
	(b)	For the above problem 4(a)OR, draw bending moment and twisting moment	07	

Q.5	(a)	Derive an expression for Meridional stress and Hoop stress develop in a	07
		spherical dome subjected to concentrated load "W" at crown.	
	(b)	A conical dome of 100mm thick and 3.5m rise is to be used to cover a hall of	07
		20 - 1 The 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	

diagrams.

b) A conical dome of 100mm thick and 3.5m rise is to be used to cover a hall of 20m diameter. The live load of 2kN/m² is acting over the dome surface. Calculate meridional stress and hoop stress at the base of Dome. Density of concrete is 25kN/m³.

07

07

(b) A spherical dome has 6 m span and 1.25 m rise. It is subjected to load of 600 N/m^2 , including self weight and a lantern load of 800 N at crown. Take thickness as 150 mm. Assume live load 1.2 kN/m^2

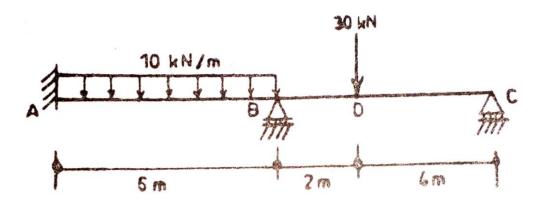


Fig.1 Q.1 (a)

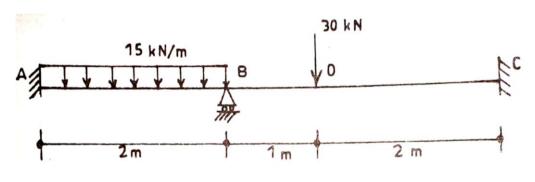


Fig.2 Q.1 (b)

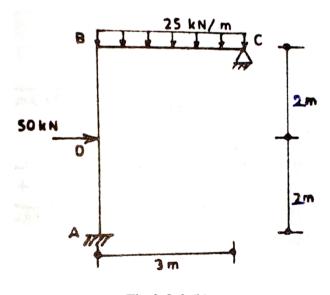


Fig.3 Q.2 (b)