Seat No.: Enrolment No			-
		GUJARAT TECHNOLOGICAL UNIVERSITY	
C	h : a a	BE - SEMESTER-V (OLD) - EXAMINATION – SUMMER 2017	017
	•	et Code: 151002 Date: 01/05/20 Date: 01/05/20	J1 /
	•	02:30 PM to 05:00 PM Total Marks:	70
Instructions:			. 70
	1.		
	2. 3.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	 (i) Transform the vector B = ya_x - xa_y + za_z into cylindrical coordinates. (ii) Transform vector field G = (xz/y)a_x into spherical components and variables. 	07
	(b)	Derive the expression for the electric field \mathbf{E} due to infinitely long line charge distribution using Coulomb's law.	07
Q.2	(a)	State Gauss's law. Also derive mathematical formulation for the same.	07
	(b)	Three infinite uniform sheets of charges are located in the free space as follows: 3 nC/m^2 at $z = -4$, 6 nC/m^2 at $z = 1$, and -8 nC/m^2 at $z = 4$. Determine the E at the point $P(2, 5, -5) \& Q(4, 2, -3)$.	07
	(b)	OR State & derive following:	07
	(0)	(1) Maxwell's first equation for electrostatics, (2) Divergence theorem.	07
Q.3	(a)	What are the characteristics of a good conductor? Determine boundary conditions at a boundary between a conductor and free space.	07
	(b)	What is an electric dipole? Derive the expression for the potential and electric field intensity due to a dipole at distances very large from the origin compared to the spacing between the charges of the dipole.	07
Q.3	(a)	Derive the boundary conditions at the interface between two dielectric materials	07
C		with permittivities ε_1 and ε_2 .	
	(b)	Given the potential field $V = 2x^2y - 5z$, and a point $P(-4, 3, 6)$, find following at point P : the potential V, the electric field intensity E , the direction of E , the electric flux density D , and the volume charge density ρ_v .	07
Q.4	(a) (b)	Using necessary diagrams, discuss magnetic boundary conditions. An infinitely long coaxial cable is carrying current I by the inner conductor of radius 'a' and –I by the outer conductor of radii 'b' and 'c', where $c > b$. Derive the expressions for H at (i) $\rho < a$, (ii) $a < \rho < b$, (iii) $b < \rho < c$, (iv) $\rho > c$.	07 07
Q.4	(a)	State & discuss Biot-Savart law & Ampere's circuital law using necessary	07
	(b)	diagrams. Write a detailed note on Magnetization and permeability.	07
Q.5	(a)	Derive the expression of capacitance for following capacitors: (a) Parallel plate	07
	(b)	capacitor, (b) Coaxial capacitor, (c) Spherical capacitor. Mention all four Maxwell's equations for steady fields. Using the concept of Faraday's law and displacement current modify them for time varying fields.	07
o -		OR	6-
Q.5	(a)	Find the magnitude of current density in a sample of silver for which $\sigma = 6.17 \times 10^7$ S/m and $\mu_e = 0.0056$ m ² /V·s if: (i) the drift velocity is 1.5 μ m/s; (ii) the electric field intensity is 1 mV/m; (iii) the sample is a cube 2.5 mm on a side having a voltage of 0.4 mV between opposite faces; (iv) the sample is a cube 2.5 mm on a side carrying a total current of 0.5 A.	07
	(b)	Write a short note on skin effect & skin depth.	07
			1