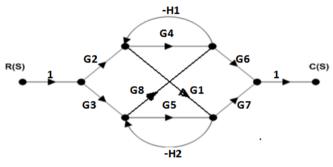
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (OLD) - EXAMINATION - SUMMER 2017

Subject Code: 160104 Date: 05/05/2017

Subject Name: Basic Control Theory


Time: 10:30 AM to 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 0.1 (a) Compare following

07

- 1. Open loop System and Closed loop system
- 2. Block diagram method and Signal flow graph
- (b) Draw unit step response of a second order control systems. Describe all 07 specifications in detail.
- What is analogous system? Establish Force Voltage and Force Current 07 0.2
 - (b) Obtain the transfer function C/R from the signal flow graph as shown in below 07 figure.

OR

(b) Explain the rules for block diagram reduction method.

07

- **Q.3** What is meant by order & type of systems? What are position, velocity and (a) acceleration error constant? Explain the performance of type 0 system of step

07

Derive the unit step response of the first order system. **(b)**

07

07

The characteristic equation of a feedback system is 0.3 $F(s) = s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16$ Using the Routh's Hurwitz criterion determine the stability of the system.

07

07

(b)

Which two plots constitute Bode plot? What steps are followed to sketch Bode 0.4 (a) plot? What are frequency response specifications? Explain with the help of diagrams.

07

Draw the Root Locus diagram for a closed loop system whose loop transfer **(b)** function is given by, G(s)H(s) = K/s (s+5)(s+10). Comment on the stability.

OR

Explain steps for plotting root locus. **Q.4** (a)

07 07

Sketch bode plot for the following system and find gain margin, phase margin, gain crossover frequency and phase crossover frequency.

G(s) = 4(s+0.5)/s(s+0.2)(s+1)

Q.5	(a)	Comparison between Modern Control Theory and Conventional Control	07
		Theory.	
	(b)	Explain the following terms: State, State Variables and State models.	07
		OR	
Q.5	(a)	Obtain polar plot of $G(s)=1/[s(T_1s+1)(T_2s+1)]$.	07
	(b)	Obtain state space model for the single input and single output system with necessary dimension of matrices. Define state transition matrix using equation. State its properties.	07
