
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (OLD) - EXAMINATION – SUMMER 2017				
Su	ıbjec	t Code: 160304 Date: 03/05	Date: 03/05/2017	
Subject Name: Bio-Medical Control Theory				
			Marks: 70	
Instructions:				
	2	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 		
Q.1	(a)	Define control system. Draw and explain open loop and closed loop system with two examples of each.	07	
	(b)	What do you mean by Under-damped and Over-damped system?	02	
	(c)	1) Root locus method is Time Domain Method? True/False.	05	
		2) State Nyquist Stability Criterion.		
		3) Write Mason's Gain Formula.		
Q.2	(a)	Define the following terms:	07	
		a) Transfer Function, b) Order of the system, c) Transportation Lag,		
	(b)	d) State, e) Chain Node, f) Self-Loop, g) Transfer-Matrix. Derive force-voltage analogy.	07	
		OR		
	(b)	Derive the Transfer Function of an Armature controlled d.c. motor	07	
Q.3	(a)	Write short note on Standard Test Inputs.	07	
	(b)	Derive an equation of unit step response of a second order system for an	07	
		Under-damped case.		
Q.3	(a)	OR Explain missile guidance and launching system with neat sketch and related	07	
L	()	explanation.		
	(b)		07	

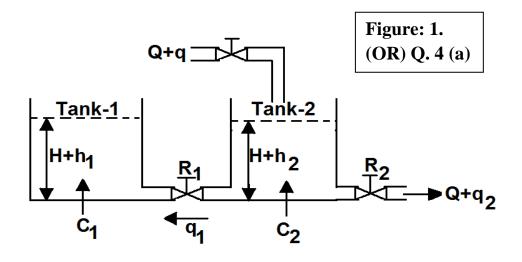
(b) Obtain transfer function for the given system by using block reduction07 technique

Q.4 (a) Obtain transfer function for the given signal flow graph.

07

- (i) Determine range of K for system stability.
- (ii) Can the system be marginally stable? If so,
- (iii) Find the required value of K and frequency of sustained oscillations.

OR


- Q.4 (a) Consider the liquid level system shown in figure 1. The inflow and outflow rate are Q at steady state and flow rate between the tanks is zero. The heads of both tanks are at H. At t = 0, the inflow rate is slightly changed to Q + q. The resulting changes in the heads h1 and h2 as well as flow rates q1 and q2 are assumed to be small. The capacitance of tank 1 & 2 are C1 and C2 respectively. The R1 is the resistance of the valve between both tanks while R2 is the resistance of the outflow valve. Design the mathematical model for q input and h2 output.
 (b) a⁶ + 2a⁵ + 8a⁴ + 12a³ + 20a² + 16a + 16a 0. Check the atability of the given 07
 - (b) $s^{6}+2s^{5}+8s^{4}+12s^{3}+20s^{2}+16s+16=0$, Check the stability of the given 07 characteristic equation using Routh's method.

$$\frac{Y(s)}{U(s)} = \frac{10.4s^2 + 47s + 160}{s^3 + 14s^2 + 56s + 160}$$

OR

Q.5 (a)Sketch the bode plot for the system having07 $G(s)*H(s) = 10/s (1+0.1s)^2$. Comment on stability.07(b)Sketch the Nyquist plot of a given transfer function07

(b) Sketch the Nyquist plot of a given transfer function $G(s)*H(s) = 1/s^3 (s+1)$. Comment on stability.
