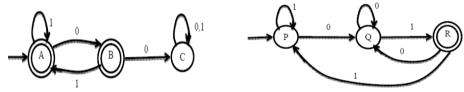
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (OLD) - EXAMINATION - SUMMER 2017 Subject Code: 160704 Date: 05/05/2017 **Subject Name: Theory Of Computation** Time: 10:30 AM to 01:00 PM **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. (a) Explain one-to-one, onto and bijection function with suitable example. 0.1 07 Explain equivalence relation with example. 07 **(b)** Write Regular Expressions for the following languages of all strings in 0.2 **(a)** 07 $\{0,1\}^*$ (i) Strings that do not end with 01. The language of all strings containing both 101 and 010 as (ii) substrings

(b) Using Principle of Mathematical Induction, prove that for every $n \ge 1$ $\sum_{i=0}^{n} i = n (n+1) / 2$ 07


OR

(b) Prove that $\sqrt{2}$ is Irrational by method of Contradiction. 07

Q.3 (a) Let
$$M_1$$
 and M_2 be the two FAs as given below.

Μ1

M2

Draw FA recognizing (L $_1\cup L_2$) and (L $_1-L_2$)where L $_1$ and L $_2$ correspond to M_1 and M_2 respectively.

(b) Compare FA, NFA and NFA- \wedge .

OR

Q.3 (a) Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form generating $L(G) - \{ \}$ $S \rightarrow aY \mid Ybb \mid Y$ $X \rightarrow \land \mid a$ $Y \rightarrow aXY \mid bb \mid XXa$

- (b) Draw a FA for following regular language.
 - (i) (11+110)* 0

(ii) (0+1)*(10+11)

- Q.4 (a) For the language $L = \{ xCx^r | x \in \{a,b\}^* \}$ design a PDA(Push Down 07 Automata) and trace it for string "abcba".
 - (b) Write Kleene's Theorem part-I, Any regular language can be accepted by a 07 finite automation.

OR

Q.4 (a) Write transition table for PDA recognizing following language: $\{a^{i}b^{j}c^{k} | j = i \text{ or } j = k \}.$

1

07

07

07

07

q	δ (q, Λ)	δ(q, 0)	δ(q, 1)
Α	{B }	{A}	Ó
В	{ D }	{C}	Ó
С	Ø	Ó	{B }
D	Ó	{ D }	Ó

Q.5	(a)		07
	(b)	as Odd Palindromes). Write a short note on Universal Turing Machine.	07
~ -		OR	~ -
() 5	(a)	Write a Turing Machine to convictings	07

		UN	
Q.5	(a)	Write a Turing Machine to copy strings.	07
	(b)	Write a short note on μ -recursive function.	07
