Enrolment No._____

Date: 09/05/2017

Total Marks: 70

07

07

07

07

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (OLD) - EXAMINATION - SUMMER 2017

Subject Code: 170501

Subject Name: Chemical Reaction Engineering-I

Time: 02:30 PM to 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Give classification of chemical reactions and discuss variables affecting the rate of 07 reaction.
 - (b) Distinguish between holding time and space time for flow reactors.
- Q.2 (a) The half life period for a certain first order reaction is 2.5×10^3 sec. How long will it take 07 for ¹/₄ of the reactant to be left behind? [C_{A0} = 1mol/lit]
 - (b) Develop general expression which relates the changing total pressure of the system π to **07** the changing partial pressure of any of reaction component in a constant volume batch system for isothermal gas reaction.

OR

- (b) State various theories of temperature dependency and discuss Arrhenius theory in detail. 07
- Q.3 (a) Prove that N number of same sized mixed flow reactors in series can be approximated as 07 a plug flow reactor.
 - (b) Explain elementary and non elementary reactions with examples.

OR

- Q.3 (a) Write short note on 'Equilibrium constant from thermodynamics'. 07
 - (b) The homogeneous gas decomposition of phosphine 4PH3 (g) \longrightarrow P4 (g) + 6H₂ 07 proceeds at 649^oC with the first-order rate $-r_{PH3} = (10/hr) C_{PH3}$ What size of plug flow reactor operating at 649°C and 460 kPa can produce 80%

conversion of a feed consisting of 40 mol of pure phosphine per hour?

- Q.4 (a) Derive rate equation for autocatalytic reaction.
 - (b) Explain the terms in details. (1) instantaneous fractional yield (2) overall fractional yield 07 (3) selectivity

OR

- Q.4 (a) Write in brief about 'should it make any difference in the product distribution on how 07 reactant A and B are mixed?'
 - (b) At present we have 90% conversion of a liquid feed (n = 1, $C_{A0} = 10$ mol/liter) to our **07** plug flow reactor with recycle of product (R = 2). If we shut off the recycle stream, Calculate the space time to the same 90% conversion for with and without recycle.
- **Q.5** (a) What is Pseudo first order reaction? Derive rate equation for it.
 - (b) For the two CSTRs in series, 40% conversion is achieved in the first reactor. What is the volume of each of the two reactors necessary to achieve 80% overall conversion of the entering species A? (If F_{A2} is the molar flow rate of A exiting from the last reactor in the sequence, $F_{A2} = 0.2F_{A0}$) $F_{A0} = 0.867$ mol/s

Data:

Х	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.85
-r _A	0.0053	0.0052	0.0050	0.0045	0.0040	0.0033	0.0025	0.0018	0.00125	0.00100
mol/dm ³ .s										

- Q.5 (a) Discuss types of ideal reactors in detail.
 - (b) Derive performance equation for first order followed by zero order reaction. Also 07 represent it graphically.
