Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (OLD) - EXAMINATION – SUMMER 2017
Subject Code: 170902
Date: 02/05/2017

	U	ct Coue: 1/0902 Date: 02/05/	4 01 /
S	ubje	ct Name: Electrical Machine Design-I	
		: 02:30 PM to 05:00 PM Total Mark	s: 70
Iı	nstruc	etions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a)	Discuss factors to be considered while deciding the length of air gap in the design of a D.C. machine	07
	(b)	What is design optimization? Derive necessary condition for designing a transformer with minimum cost.	07
Q.2	(a)	machine design	07
	(b)	of a D.C. machine	07
	(b)	OR Derive equation $Et = K \sqrt{Q}$, where $Q = kVA$ rating of a transformer. Explain how service condition of transformer affect the value of K .	07
Q.3	(a)	What is window space factor? Explain how it varies with (1) KVA rating (2) KV rating	07
	(b)	Determine the main core dimensions of a 5 KVA, $11000/400V$, 50 Hz, 1 -phase core type distribution transformer from the following data: The net conductor area in window is 06 times the net c/s of iron in the core , Current density = 1.4 A/mm², square c/s of core, window space factor= 0.2 Max. flux density = 1.0 Wb/m², Height of window / width of window = 3 OR	07
Q.3	(a)		07
	(b)	Calculate the main dimensions of the armature of a 400 KW, 500V, 180 rpm, 16 poles dc generator. Use square pole-face. Efficiency = 90% Pole-arc to pole pitch ratio = 0.7 Average gap density = 0.6 Wb/m^2 Ampere-conductors per metre = 35000 .	07
Q.4	(a)	List out the factors affecting choice of choice of number of poles & explain how in a d.c. machine affects: 1. Losses in the machine. 2. Weight of machine.	n 07
	(b)	Explain: a. Significance of mitered joints in transformer. b. Design difference between power & distribution transformer.	07

Q.4	(a)	Define Magnetic & Electric loading in D.C. machine. Also explain in brief factors affecting the selection for it.	07
	(1.)		^=
	(b)	Briefly explain cooling methods of transformer.	07
Q.5	(a)	Briefly explain the principles of core design of a current transformer	07
	(b)	Explain steps to design shunt field winding of a d.c. machine.	07
		OR	
Q.5	(a)	Write a Short Note on : Duty Cycle of electrical machines.	07
	(b)	The armature of 12 pole, 500KW, 550 V, generator has a simplex lap winding consisting of 2484 conductors. There are 621 commutator segments & ratio of pole arc to pole pitch is 0.7. Calculate	07
		 (1) The demagnetizing & cross magnetizing mmf/ pole at rated full load current if brushes are shifted through 3 segments from GNA. (2) No. of conductors that must be provided in each pole face if a compensating winding is used. 	
