Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (OLD) - EXAMINATION – SUMMER 2017 Subject Code: 171701 Date: 09/05/2017

Ti	•	Attempt all questions.Make suitable assumptions wherever necessary.	O
Q.1	(a)	Define state variable and state model. If a system has two inputs, one output and three states, find out the dimensions of the various matrices of the state model. Explain the need of diagonalisation technique.	07
	(b)	State the Computer (MatLab) commands used for State variable analysis with Syntax/code and its related outputs. Mention appropriate comments also.	07
Q.2	(a)	Explain the implementation of digital (PID, PD and PI) controllers with Necessary steps.	07
	(b)	State an Ackermann's formula. Show the Computation of State Controllability and Observability using it. What is its limitation? OR	07
	(b)	Explain the compensator design with integrated full-state feedback and observer.	07
Q.3	(a) (b)	Explain Pseudo Quantative Feedback theory with suitable Example. Give the design of Robust PID control system. OR	07 07
Q.3	(a)	Explain ZOH and compensate closed loop control system with digital computer realization.	07
	(b)	Explain the systems with pre-filter.	07
Q.4	(a)	Discuss about internal model design for step input tracking with mathematical arguments for optimal control system.	07
	(b)	Determine the Z transform for $f(t) = \sin(wt)$ and $f(t) = e^{-at}$. OR	07
Q.4	(a) (b)	Explain the control of uncertain parameter in Robust control system & stability Explain design of a dead beat response of a system.	07 07
Q.5		Design a suitable compensator in time domain for unity feedback system to meet following performance specifications. Natural frequency $t_s=10$ sec, Damping factor $\zeta=0.4$ and $K_v\geq 5$ sec ⁻¹ . $G(s)=K\ /\ s^2\ (s+1.5)$.	14
Q.5		$\label{eq:order_order_order} \textbf{OR} $ Design a suitable compensator in frequency domain for unity feedback system to meet following performance specifications. Settling time Kv _5 Sec^-1 , phase margin _ 42°, Wb = 1.02 rad/sec. G(s) = 0.25 K / s (s + 1)(0.25 s + 1).	14
