GUJARAT TECHNOLOGICAL UNIVERSITY

			AT TECHNOLOGICA STER–VIII (OLD) - EXAMINA			
Su	bied	et Code:180505		Date:06/05/20	17	
			Component Distillation (
	-	10:30 AM to 01	-	Total Marks:	70	
	truct			_ 0		
		l. Attempt all que				
			ssumptions wherever necessary.			
	•	3. Figures to the r	ight indicate full marks.			
Q.1	(a)	Define followi	ng:		07	
-		1) Light key co	mponent			
		2) Heavy key component				
	3) Adjacent key					
	4) Split key					
	5) Distributed component					
	6) Non distributed component7) Optimum reflux ratio					
	(b)	/ 1	at integration & optimum design	of distillation column.	07	
Q.2	(a)	Discuss the selec	tion criteria of operating pressur	e for distillation column	07	
Q.2	(b)	1 01				
	(~)	Discuss Sequencing of multi component distillation columns with example. OR				
	(b)	-				
	stages in rectification section & also state feed tray identification.					
Q.3	(a)	Determine the	ary distillation at standard	10		
X	()	Determine the minimum reflux ratio for the binary distillation at standard atmospheric pressure based on the following data.				
		Feed = 100 kmol/h				
		Feed mixture: benzene – toluene				
		Mole fraction of benzene in feed $= 0.4$				
		Condition of feed = at $30 {}^{0}\text{C}$				
		Mole fraction of benzene in distillate required $= 0.99$				
		Mole fraction of benzene in residue required = 0.02				
	Average relative volatility = 2.25					
	ln $p_{vB} = 15.9008 - 2788.51/(T-52.36)$ for benzene in torr ln $p_{vT} = 16.0137 - 3096.52/(T-53.67)$ for toluene in torr Normal boiling point of benzene = 80.1 °C					
			point of toluene = 110.6 ⁰ C benzene & toluene :			
			C _L at 62.65 ^o C, kJ/(kmol. ^o C)	λ at 95.3 ^o C, kJ/kmol		
		Component		· · · · · · · · · · · · · · · · · · ·		
		Benzene	146.96	29391.3		
		Toluene	173.33	34666.7		
	(b)	Define: Jet flood	ing, Down comer flooding, Liqu OR	id entrainment, Weeping.	04	
Q.3	(a)					
L	distillation.					
	(b)	Discuss the use	of heat numn with auxiliary heat t	cansfer medium for saving the	07	

(b) Discuss the use of heat pump with auxiliary heat transfer medium for saving the orgy consumption of distillation column.

Q.4 Find the disribution (or mol/h) of *n*-Butane in distillate and in residue by Thiele 14 – Geddes method based on the following data.

Table : Feed Composition (i) Component mole % n–Butane 37 *i*–*Pentane 32* n–Pentane 21 n–Hexane 10 *n*-Butane is light key component and *i*-Pentane is heav key component. (ii) Feed flow rate F = 4750 mol/h. Feed is saturated liquivd at its bubble point. (iii) Reflux ratio, R = 3(iv) D = 1250 mol/h, W = 3500 mol/h(v) Operating pressure, p = 2 atm a (vi) Assume constant molal overflow. Total condenser is used. Equilibrium Constants Data for n-Butane Tray number Temperature, °C KC₄ 1 22 1.086 2 24 1.156 3 28 1.308 4(Feed) 32 1.474 5 41 1.904 Reboiler 48 2.300 OR

Q.4 Discuss the step wise procedure for the process design of multicomponent batch 14 distillation with rectification.

- Q.5 (a) Discuss the criteria of selection among various types of trays. 07
 - (b) Discuss the advantages and disadvantages of extractive distillation over azeotropic 07 distillation.

OR

Q.5	(a)	Explain the method of determining tower diameter in sieve tray tower.		
	(b)	Explain azeotropic distillation with industrial example	07	
