Seat No.: Enrolme			nt No	
Sul Tin	oject ne:1(ructio	Name: Machine Vision (Department Elective - II) 0:30 AM to 01:00 PM Total		
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Define histogram for a digital image. Explain that the histogram process is used for image enhancement.	ogram 7	
	(b)	Explain various parameters responsible to control the quality of imag	ge. 7	
Q.2	(a)	Describe basic transfer functions used for image enhancement in dimage processing.	igital 7	
	(b)	Compare and contrast various methods of zooming and shrinkin digital image.	g the 7	
		OR		
	(b)	Describe image subtraction process. Give suitable examples of is subtraction process in different areas.	mage 7	
Q.3	(a)	Graphically show the following filters explaining their pra applications in digital image processing. high pass filter; low pass filter	ctical 7	
	(b)	Explain the functioning of Median filter with suitable example for removal of noise in the image.	or the 7	
		OR		
Q.3	(a)	Briefly describe the following operations to be performed on dimage with suitable examples. bit-plane-slicing; gray-level-slicing	igital 7	
	(b)	Give differences between working of normal median filter and adamedian filter.	aptive 7	

Explain with suitable illustrative method the dilation process used on 7

7

binary image. Give practical application of dilation process in which

(b) Briefly discuss the following logic operations based on morphology:

actual input image is a binary image.

NOT, AND, OR, XOR, NOT-AND

Q.4

- Q.4 (a) Explain the following morphological operation with suitable example and 7 neat schematic diagram.
 Hit-or-Miss Transformation
 - (b) Describe the erosion process used on binary digital image with suitable 7 illustration. Give practical application of erosion process in which actual input image is a binary image.
- Q.5 (a) Derive Laplacian filter in frequency domain. Bring out the concept of 7 image enhancement using Laplacian filter.
 - (b) Explain the following distance measuring functions between pixels of 7 digital image.
 - 1. Euclidean distance
 - 2. D₄ or city clock distance
 - 3. D₈ or chessboard distance
 - 4. D_m distance

OR

- Q.5 (a) Describe the working of averaging filter in spatial domain. Also explain 7 the type of mask that can be utilized as averaging filter and procedure of scanning over digital image for image enhancement in spatial domain.
 - (b) Show that the 2-D Discrete Fourier Transform can be computed by 7 successive computations of two 1-D Discrete Fourier Transform one after the other, one for all rows and the other for all columns.
