Seat No.:	Enrolment No.
200011000	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII (OLD) - EXAMINATION – SUMMER 2017
Subject Code:182402
Date:29/04/2017
Subject Name: Digital Signal Processing

Time:10:30 AM to 01:00 PM Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.		Aarks: 70	
Q.1	(a) (b)	Differentiate: Analog and digital signal processing. Differentiate: Energy and Power signal. Determine which of following signal is periodic. (1) $x_1(t) = \sin 10\pi t$ (2) $x_2(t) = \sin 3\pi t$	03 05
	(c)	Discuss discrete time processing of continuous time signals.	06
Q.2	(a) (b)	State and prove properties of Fourier transform. What is the importance of ROC in z transform? State the properties of transform and ROC.	07 of z 07
	(b)	OR Obtain the value of x(4) for 8 Point DFT. The sequence for x(n) is $x(n) = \{ 0, -1, 1, 2, 1, -2, 1, 1 \}$ \uparrow $n = 0$	07
Q.3	(A)	A Causal LTI System Has The Function $H(Z) = \frac{1+2z^{-1}+Z^{-2}}{(1+1/2z^{-1})(1-Z^{-1})}$ Find out the values of h(n) for shows LTI System	07
	(b)	Find out the values of h(n) for above LTI System. Explain the concept of pipelining in DSP. Also discuss the need of interlocl in brief.	king 07
Ω 2	(a)	OR Describe any one type of DSB prohitecture	07
Q.3	(a) (b)	Describe any one type of DSP architecture. (1) Determine the z-transform of the signal $x(n) = \delta(n+1) + 6\delta(n) + 12\delta(n-3) - \delta(n-4)$ (2) Find $x(n)$ if $X(z) = \frac{1+1/2z^{-1}}{1-1/3z^{-1}}$	07 07
Q.4	(a)	Draw and explain the block diagram of basic generic harward architecture for signal processor.	or a 07
	(b)	Discuss the concept of zero input limit cycle oscillation. How this care eliminated? OR	n be 07
Q.4	(a) (b)	For H (z) = $2/(z+3)$, sketch Direct form - II and its transposed realization . Explain the structures for realization of IIR systems.	07 07
Q.5	(a)	Define the following terms: 1) State space 2) Correlation 3) ROC 4) Sampling 5) Aliasing 6) Imp Response 7) Convolution	07 ulse
	(b)	Describe the properties of Discrete Fourier Transform (DFT).	07

(a) Explain Radix-2 FFT and DIT algorithm. Q.5

07 07

(b) Consider the complex sequence $x(n) = e^{j \omega 0n}$ $0 \le n \le N-1$

$$x(n) = e^{j \omega 0n}$$
 $0 \le n \le N-1$
=0 otherwise

Find Fourier transform $x(e^{j\omega})$ of x(n). also find N point DFT X[k] of finite length for x (n).
