Seat No.:	Enrolment No.

Subject Name: Circuits and Networks

What is potential difference?

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Time: 10:30 AM to 01:00 PM

Do as directed:

1. Attempt all questions.

70

Q.1

Instructions:

1

(c)

(a)

(c)

Q.3

Q.4

represented by

the figure -6.

for the load R_I .

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) - EXAMINATION – SUMMER 2017 Subject Code: 2130901 Date: 31/05/2017

Total Marks:

14

Explain Ideal Voltage source. 2 Super position theorem is applicable to ______ and _____ network. 3 4 Justify: The inductors act as an open circuit at time $t = 0_+$. 5 State and explain: Principle of conservation of charge. 6 What is transfer function? Define: Poles and Zeros of network transfer function. 7 8 Define: Driving point impedance. 9 What is two-port network? 10 What is the condition for reciprocal network for h-parameters? 11 Define: Oriented Graph. 12 What is Tree and Co-tree? 13 Define: Tie-set. 14 Define: Incidence matrix. State and explain maximum power transfer theorem. Derive the condition for **Q.2** 03 maximum power transfer to load for DC circuit. Using the specified currents, write the Kirchhoff voltage law equations for the **(b)** 04 network given in figure -1. For the circuit of figure – 2, suppose $V_{in} = 1 V$. Find R so that $V_{out}/V_{in} = 150$. **07** (c) For the circuit of figure -3, using mesh analysis find the mesh currents I_1 , I_2 07 and I_3 . Also fine voltage v across a dependent source. Q.3 (a) What is an impulse function? Find the impulse response h(t) for the network 03 function $H(s) = 1/s^2 + 4s + 4$. For the network shown in the figure – 4, determine $G_{12} = V_2/V_1$. 04 **(b)**

For the network of the figure -5, show that the equivalent Thevenin network is

 $V_T = \frac{V_1}{2}(1 + p + q - pq)$ and $R_T = \frac{3 - q}{2}$

Obtain the pole-zero plot of the transform impedance of the network shown in

For the network of the figure – 7, determine the Thevenin equivalent network

The network shown in the figure -8 is in the steady state with the switch K

The network shown in the figure -9 is in the steady state with the switch K

Determine the Laplace transform of $f(t) = e^{-at} \cos \omega t$.

open. At t = 0, the switch is closed. Determine the current i(t).

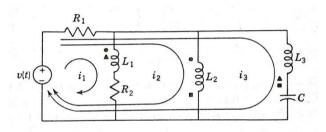
State and explain initial value theorem.

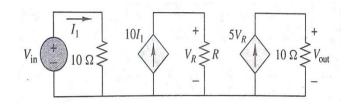
07

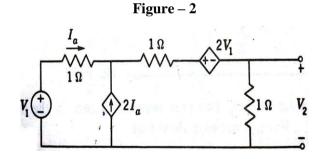
03

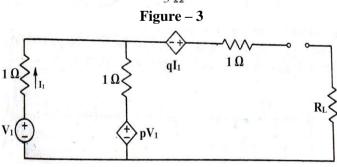
04

07


03


04


closed. At t=0, the switch is opened. Determine the voltage across the switch, v_k and dv_k/dt at $t=0_+$.


OR

- Q.4 (a) Write the initial conditions in the inductor and capacitor at t = 0₊ and t = ∞.
 (b) In the network of the figure 10, the switch K is in position a for a long time.
 At t = 0, the switch is moved from a to b. Find v₂(t) with assumption that the initial current in the 2 h inductor is zero.
 - (c) The network shown in the figure 11 is in the steady state with the switch K open. At t = 0, the switch is closed. Determine the values of $v_a(0_-)$ and $v_a(0_+)$.
- Q.5 (a) Determine h-parameters in terms of z-parameters.
 - (b) For the resistive network shown in the figure -12, draw the oriented graph and tree. Also develop the fundamental tie-set matrix (B_f) .
 - (c) For the network shown in the figure 13, determine the y-parameters. 07
- Q.5 (a) Derive the condition for the network to be reciprocal for ABCD-parameters. 03
 - (b) For the resistive network shown in the figure -12, Develop the incidence -04 matrix A.
 - (c) For the network shown in the figure 13, determine the z-parameters. 07

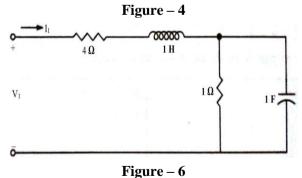
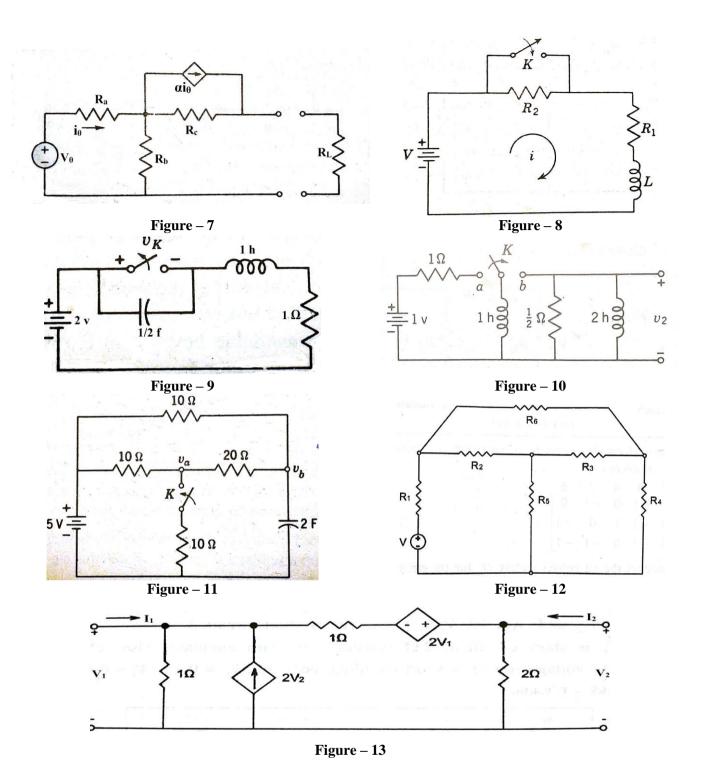



Figure – 5

