Enrolment No._____

		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) - EXAMINATION – SUMMER 20	
Suhi	ect		05/06/2017
•			05/00/2017
-		Name: Engineering Thermodynamics & Heat transfer	N
			Marks: 70
Instru			
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
			MARKS
Q.1		Define following terms:	14
Q.1	1	Macroscopic Approach	14
	2	Homogeneous System	
	2 3	Entropy	
	4	Enthopy	
	5	Energy	
	6	Exergy	
	7	Composite System	
	8	Conduction	
	9	Convection	
	10	Radiation	
	11	Pure Substance	
	12	Reversibility	
	13	Clausius Inequality	
		Emissivity	
Q.2	(a)	The e.m.f. in a thermocouple with the test junction at t°C on gas	03
c		thermometer scale and reference junction at ice point is given by	
		$\mathcal{E} = 0.20 \text{ t} - 5 \times 10^{-4} \text{ t}^2 \text{ mV}$	
		The millivoltmeter is calibrated at ice and steam points. What will	
		this thermometer read in a place where the gas thermometer reads	
		50°C?	
	(b)	Explain Zeroth Law of Thermodyanmics with any one application.	04
	(c)	Write a short note on Carnot Cycle (Reversible Cycle).	07
		OR	
~ •	(c)	Define Irreversibility. What are the causes of Irreversibility?	07
Q.3	(a)	A cyclic heat engine operates between a source temperature of	03
		800°C and a sink temperature of 30°C. What is the least rate of heat	
		rejection per kW net output of the engine?	
	(b)	Explain the concept of p-v diagram for a pure substance with neat	04
	(\cdot)	sketch.	07
	(c)	Derive general steady flow energy equation.	07
02	(a)	OR Define DMM1 and DMM2	0.2
Q.3	(a) (b)	Define PMM1 and PMM2.	03
	(b)	Explain the concept of Mollier diagram for a pure substance with neat sketch.	04
	(n)	Explain the concept of Energy & Exergy with suitable example.	07
Q.4	(c) (a)	What is the mechanism of Heat Transfer?	07
Y.4	(a) (b)	Define the function of Heat Exchanger. Classify Heat Exchangers.	03 04
	(\mathbf{c})	Explain & classify types of Convection.	07

Q.4	(a)	Define Internal Flow, Laminar Flow and Turbulant Flow.	03
	(b)	The inner surface of a plane brick wall is at 60°C and the outer	04
		surface is at 35°C. Calculate the rate of heat transfer per m ² of	
		surface area of the wall, which is 220 mm thick. The thermal	
		conductivity of the brick is 0.51 W/m°C.	
	(c)	How heat is conducted in Hollow and Composite cylinders? Explain	07
		with neat sketch.	
Q.5	(a)	Compare First Law and Second Law of Thermodynamics.	03
÷	(b)	Explain & draw the pool boiling curve.	04
	(c)	Derive the equation for logarithmic mean temperature difference	07
		(LMTD) for counter flow heat exchanger.	
		OR	
0.5	(a)	Explain emissivity and absorptivity of a surface.	03
c	(b)	Differentiate between Black Body and Gray Body.	04
	(c)	Define the term Radiation. Explain following laws of Radiation:	07
		1.) Stefan Boltzman Law	
		2.) Kirchoff's Law	
