GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER–IV (NEW) - EXAMINATION – SUMMER 2017 ode: 2140001 Date: 30/05/2017

Subject Code: 2140001

Subject Name: Mathematics-4

Time: 10:30 AM to 01:30 PM

Instructions:

Q.1

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Answer each of the following questions.

- 1 Find the real and imaginary part of $f(z) = z^2 + 5z$.
- 2 Define: domain
- **3** Is $f(z) = \overline{z}$ analytic? Give the reason.
- 4 Evaluate $\int \exp(z^4) dz$, Where C is any simple closed curve.
- 5 What does conformal mapping mean?
- 6 What are the fixed points of the mapping $w = \frac{(3iz+13)}{(z-3i)}$?
- 7 What is the order of pole of the point z = 0 for the function $\frac{\sin z}{z^5}$?
- 8 State the De Moivre's theorem.
- 9 If $f(x) = \frac{1}{x_0}$, find the divided difference of $[x_0, x_1, x_2]$.
- 10 State: Intermediate value property.
- 11 Write the formula of Euler's method to find the solution of IVP:

$$\frac{dy}{dx} = f(x, y); \ y(x_0) = y_0$$

- 12 Name two different iterative methods for the solution of a system of linear equations.
- 13 State the Trapezoidal rule with n = 12.
- **14** Write the formula for the quadratic Lagrange interpolation.
- **Q.2** (a) Define a harmonic function. Show that $u(x, y) = x^2 y^2$ is harmonic. Find a og conjugate harmonic.
 - (b) Define mobious transformation. Determine the mobious transformation which 04 maps the points $0, \infty, i$ to $\infty, 1, 0$.
 - (c) (i) Discuss the convergence of $\sum_{n=0}^{\infty} \frac{(2n)!(z-2i)^n}{(n!)^2}$ and also find the radius of **04** convergence.
 - (ii) Expand $\log(1 + z)$ about z = 0 as a Taylor's series. 03

(c) Expand
$$f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$$
 in the region:
(i) $|z| < 1$ (ii) $1 < |z| < 4$ (iii) $|z| > 4$
(7)

OR

Total Marks: 70

- **Q.3** (a) Evaluate $\prod_{c} |z| dz$, where C is the left half of the unit circle |z| = 1 from z = -i to 03 z = i.
 - (b) State the Cauchy's integral theorem and Cauchy's integral formula. Using them 04 evaluate $\prod_{c} \left(\frac{e^{z}}{z-2} \right) dz$ where C is the circle (i) |z| = 3, (ii) |z| = 1
 - (c) State Cauchy's residue theorem. Using it evaluate $\prod_{c} \left[\frac{z^2}{(z-1)^2(z+2)} \right] dz$ where C is the circle |z| = 4.

OR

(a) Find the residue of $f(z) = \frac{1 - e^{z}}{z^4}$ at z = 0. 03

Q.3

(b) Define singular points of f(z). Find the singular points of: $f(z) = \frac{z^2}{(z-1)(z-2)^2}$ and classify them.
(04)

(c) Using residues to evaluate
$$\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + 9)(x^{2} + 4)^{2}}.$$
 07

- **Q.4** (a) Explain Newton-Raphson method for solving f(x) = 0. 03
 - (b) Apply Newton-Raphson method to find the solution of $\sin x = e^{-x}$ upto three **04** decimal places, starting with $x_0 = 0.6$.
 - (c) Compute a 7D (seven decimal)-value of the Bessel function $J_0(x)$ for x = 1.72 07 from four values in the following table, using (i) Newton's forward formula and (ii) Newton's backward formula

(ii) ite wood b buen ward formala					
x	1.7	1.8	1.9	2.0	
$J_0(x)$	0.3979849	0.3399864	0.2818186	0.2238908	
OR					

- Q.4 (a) Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ by Gaussian integration for three points. (b) Evaluate $\int_{0}^{2} e^{-x/2} dx$ using Simpson's 1/3 rule with h=0.25. 04
 - (c) Is the coefficient matrix of the following linear equations diagonally dominant? 07 If not, convert it into diagonally dominant and solve by Gauss-Seidel method. 10x + y + z = 6, x + y + 10z = 6, x + 10y + z = 6.
- Q.5 (a) Evaluate $\int_{0}^{6} \frac{dx}{1+x^{2}}$ by using the trapezoidal rule. (take h=1) 03
 - (b) Compute f(9.2) by using Langrage interpolation method from the following 04 data 04

x	9	9.5	11
f(x)	2.1972	2.2513	2.3979

(c) Apply fourth order Runge-Kutta method to find y(0.1) and y(0.2) given that **07** y' = x + y, y(0) = 1 (take h=0.1)

2

- **Q.5** (a) Find the smallest positive root of the equation $x^3 4x 9 = 0$, using the **03** bisection method in four stages.
 - (b) Solve using partial pivoting by Gauss elimination method: 04

2x + 2y + z = 6, 4x + 2y + 3z = 4, x + y + z = 0.

(c) Determine the largest eigenvalue and the corresponding eigenvector of the 07 matrix A ,

Where $\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ by power method.
