1

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2140105

Subject Name: Numerical Methods

Time: 10:30 AM to 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Short Questions

- 1 State true or false, Runge Kutta is self starting method.
- 2 State picards formula
- 3 Which of the following is a step-by-step method a)Taylors b)Picards c) Adams method d)none of them
- 4 State an iterative method to solve first order first degree differential equation.
- 5 How to choose interval in bisection method.
- **6** Which method is more accurate among trapezoidal and Simpson rule.
- 7 Which interpolation method supports unequal interval examples, Newton forward or Lagranges interpolation method
- 8 State the normalized equations for fitting straight line using method of least square.

9 The equation $u_{t} = c^{2}u_{xx}$ is a)laplace equation b)hyperbolic equation c)parabolic equation d)none

- **10** State Runge kutta 4^{th} order method formulae for y_1 .
- 11 The first approximate of y_1 for IVP $\frac{dy}{dx} = \frac{x-y}{2}$ y(0) = 1using Euler on[0,3] at h=0.25 is
- **12** State value of p for Newtons backward formula.
- **13** State Newton Raphson formulae

14 Name two finite element approaches

Q.2 (a) Solve using successive approximation method 03 $x^4 - x - 10 = 0$ correct upto three decimal places with $x_0 = 1.5$

- (b) Find a positive root using Newton Raphson method for $x^3 + 2x^2 + 10x 20 = 0$.
- (c) Use Secant method to solve $e^{-x} - x = 0$ correct upto two decimal places with $x_{-1} = 0$ $x_0 = 1$.

Total Marks: 70

Date: 30/05/2017

MARKS

14

Enrolment No.

		OR										
	(c)	Find the real root of equation $f(x) = xe^{x} - 2 = 0$ which										
		lies between 0.8 and 0.9. correct to three decimal places.										
Q.3	(a)											
		From the data										
		x 1.7	1.8		1.9		2					
		J(x) 0.3979849							3			
	(b)	Use trapezoidal rul	e to evalu	ate \int_{0}^{1}	$e_{\int_{0}^{1} \frac{dx}{1+x^{2}}} \text{ with } h=1/6.$							
	(c)	Solve the system using Gauss elimination method										
	(-)	3x+y-z=3, 2x-8y+z=-5, x-2y+9z=8.										
			•	R								
Q.3	(a)	Use Stirlings formula to compute y_{35} from the table										
		x 10	20	30	- 55	40		50				
		y 600	512	439)	346		243	_			
	(b)											
		2										
		$\int e^{-x^2} dx \text{for h=0.5.}$										
		0		•		• ,	1 (ne 07			
	(c)	-	line for the first two intervals from the a use the result to compute value at $x=5$									
			<u>4.5</u>	10 00	7	le value	9 at	x=3				
			4.5		2.5		0.	5	_			
Q.4	(a)								03			
4.	(a)	Solve using Taylors series method $\frac{dy}{dx} = xy^{\frac{1}{3}}$ with y(1)=1.										
			dx									
	(b)	Using Runge Kutta							04			
		$\frac{dy}{dx} = \frac{y^2 - 2x}{y^2 + 2x} y(0) = 0 at x = 0.1 \text{ with two iterations.}$										
	(c)	Discuss the concept of finite difference method for $u_{xx} + u_{yy} = 0$										
			C	R								
Q.4	(a) Solve using Picards method $\frac{dy}{dx} = \frac{y-x}{y(0)} = 1$ for											
		Solve using Picards method $\frac{1}{dx} = \frac{1}{y+x} y(0) = 1$ for										
	x=0.1.											
	(b)	Explain the differe	nce betwe	en fii	nite d	lifferen	ice a	nd fini	te 0 4			
		element method										
	(c)	Solve us	sing		Eule	r		metho	od 07			
		dy	(1) 0	C	1	•	,	1.4				
		$\frac{dy}{dx} = \log(x + y) y(1) = 2 for x = 1.2 and x = 1.4$										
Q.5	(a)	Fit the straight lin	line to the given data using least square									
-		method for the data,										
		x 0	1	2		3		4				
		y 1	1.8	3.3		4.5		6.3				
	(b)	Describe the Galer				ef			04			
	(c)	Explain shooting n	nethod pro	ocedu	res				07			

OR

OR

Q.5 (a) A simply supported beam carries a concentrated load P at its midpoint. Corresponding to various values of P the maximum deflection Y is measured Find the law of the form Y=a+bP using least square method.

Р	100	120	140	160	180	200
Y	0.45	.55	.60	.70	.80	.85

(b) Describe the Rayleigh ritz method in brief.

(c) Explain successive over relaxation method state the forward finite difference for second order partial differential equation.

03

04

07