GUJARAT TECHNOLOGICAL UNIVERSITY

		CEMESTED IN (NEW) EVANINATION SUM	ADIII AED 2017
Subject	BE Code	- SEIVIESTEK-IV (NEW) - EXAMINATION – SUMM • 2140107	1EK 2017 Data: A2/A6/2017
Subject	Datt. 03/00/2017		
Subject	Name	: Computational fluid dynamics I	
Time: 10):30 A	AM to 01:00 PM	Total Marks: 70
Instruction	ns:		
1. 2	Attem	upt all questions.	
3.	Figure	es to the right indicate full marks.	
	8	0	
			MARKS
Q.1		Short Questions	14
	1	What is CFD?	
	2	What is the need of boundary conditions?	
	3	List areas of CFD applications.	
	4	Name the basic working principles for fluid flow systems	
	5	Define an implicit approach.	
	6	Name different fluid flow models.	
	7	Why grid generation is required?	
	8	What is an initial condition given to a problem?	
	9 10	State the Newton's second law of motion.	
	10	What is structured arid?	
	11	What is structured grid?	
	12	Define an explicit approach	
	13	Differentiate between accuracy and precision	
02	(9)	Derive the expression of substantial derivative	03
Q.2	(h)	Derive continuity equation in Cartesian	04
	(c)	Derive the generic form for CFD for the complete flo	ow 07
		system.	
		OR	
	(c)	Solve FVM problem for 1-D heat diffusion.	07
Q.3	(a)	Draw a small element representing all the forces acti	ng 03
		on it to derive a momentum equation in X direction.	
	(b)	Explain in detail the different types of fluid flow.	04
	(C)	what is descretization? why it is required? List the ba	SIC 07
		OR	
0.3	(a)	Differentiate FDM, FEM and FVM.	03
C	(b)	Write a short note on error and stability. And define the stal	ole 04
		equation.	
	(c)	Write a short note on Maccormark Technique	07
Q.4	(a)	Explain the steps for CFD preprocessing.	03
	(b)	Explain the steps for CFD post processing.	04
	(c)	Derive 1 st order derivatives following forward differen	ce, 07
		OR	
04	(8)	Explain the need to study mathematical behavior	of 03
-vy	(a)	governing equations for a fluid flow system.	
	(b)	Explain the Eigen value method in short.	04
	(c)	Derive the energy equation for 3-Dimensional, visco	us 07
		flow.	

Q.5	(a)	Write a short note on unstructured grid.	03
	(b)	Write a short note on structured grid.	04
	(c)	Write a short note on implicit approach and explicit approach.	07
		OR	
Q.5	(a)	Explain the concept of transformation of grid.	03
-	(b)	Derive 2 nd order derivative terms of Laplace equation in difference terms	04
	(c)	Write a short note on Lax-Wendroff technique	07
