Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER–IV (NEW) - EXAMINATION – SUMMER 2017

Subject Code: 2140505 Date: 30/05/2017

Subject Name: Chemical Engineering Maths

Time: 10:30 AM to 01:30 PM Total Marks: 70

Instructions:

- **1. Attempt all questions.**
- **2. Make suitable assumptions wherever necessary.**
- **3. Figures to the right indicate full marks.**
- **Q.1** Answer the following questions. 14
	- **1** Round the numbers 3.645 and 3.655 to three significant figure.
	- **2** Define Relative error
	- **3** Define upper triangular matrix.
	- **4** List out iterative methods to solve linear algebraic equations.
	- **5** Differentiate between open methods and bracketing methods to solve non linear algebraic equations.
	- **6** What are the limitations of Newton Raphson method.
	- **7** Define Coefficient of determination (r^2) .
	- **8** For perfect fit, what is value of correlation coefficien (r)?
	- **9** List out the interpolation methods, which can be used when data points are available at unequal interval.
	- **10** Define trapezoidal rule for numerical integration.
	- **11** If number of equal spacing even than we can use Simpson's 3/8 rule. True/False?

12 Reduce $\frac{d^2 y}{2} + y^2$ $\frac{d^2y}{dx^2} + y^2 \frac{dy}{dx} + y = 0$ to set of 1st order differential equations.

13 Write down Runge Kutta 4th order formula to solve following two ordinary differential equations.

$$
\frac{dy}{dx} = f_1(x, y, z) \quad and \quad \frac{dz}{dx} = f_2(x, y, z)
$$

- **14** List out methods, which can be used to convert partial differential equations in to algebraic equations.
- **Q.2 (a)** Describe different types of errors. **03**
	- **(b)** Describe the term error propagation with example. **04**
	- (c) Solve following equations using Newton Raphson technique starting with $x_0 = [0.5 \ 0.5]$. Perform two iterations. **07**

$$
f_1(x_1, x_2) = 4 - 8x_1 + 4x_2 - 2x_1^3
$$

$$
f_2(x_1, x_2) = 1 - 4x_1 + 3x_2 + x_2^2
$$

OR

(c) Calculate the bubble point temperature for binary mixture benzene(1) and toluene(2) at 1 atm **07**

pressure and $x_1 = 0.4$, using Secant method. Carry out one iteration. **Data Given:**Two initial guess temperatures are: $T_i = 353$ K and $T_{i-1} = 360$ K.

 $f_{T} = x_{1} P_{1}^{sat} + x_{2} P_{2}^{sat} - P = 0$ Antoine equation: $\ln P^{sat} = A - \frac{B}{T+C}$, P is in kPa and T is in K. A B C Antoine constants: Benzene 14.1603 2948.78 -44.5633 Toluene 14.2515 3242.38 -47.1806 +

Q.3 (a) Describe bisection method. **03**

(b) For turbulent flow of a fluid in a hydraulically smooth pipe, Prandtl's universal resistance law relates the friction factor, f, and the Reynolds number, Re, according to following relationship: **04**

$$
\frac{1}{\sqrt{f}} = -0.4 + 4 \log_{10} (Re \sqrt{f})
$$

Compute f for $Re = 1000$, using Newton-Raphson method with initial f₀= 0.01. Perform one iteration.

(c)

Solve 1 2 3 1 2 1 $\sin x = 2$ 0 1 1 $|x_1|$ 4 $\begin{vmatrix} 1 & 2 & 1 \end{vmatrix}$ $\begin{vmatrix} x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \end{vmatrix}$ $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} x_3 \end{bmatrix}$ $\begin{bmatrix} 4 \end{bmatrix}$ using Gauss-Seidel technique.

Carry out two iteration, starting with $x^{(1)} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$.

OR

Q.3 (a) Describe Gauss-Jordan elimination method. **03**

2 1 0 $\|$ x $\|$ 1

 $\begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$

(b) Solve the following three equations for P_1 , P_2 and P_3 using Gauss Elimination method. **04**

> 0.01 0.95 0.10 || P | 400 0.99 0.05 0 μ P $_i = 400$

 $\begin{bmatrix} 0.01 & 0.95 & 0.10 \end{bmatrix} \begin{bmatrix} P_1 \end{bmatrix}$ $\begin{bmatrix} 400 \end{bmatrix}$ $\begin{vmatrix} 0.99 & 0.05 & 0 \end{vmatrix}$ $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ P_2 = $\begin{vmatrix} 400 \\ 1 \end{vmatrix}$

- **Q.4 (a)** Suggest method to plot the variables y and x, given in the following equation, so that data **03** fitting the equation will fall on straight line.
	- $(\alpha 1)$ $y = \frac{\alpha x}{1 + x (\alpha - 1)}$ $= \frac{\alpha x}{1 + x (\alpha -$
	- **(b)** Obtain the density of a 26% solution of phosphoric acid in water at 20°C, using Lagrange's interpolation formula. Can we perform the same calculation using Newton's forward difference interpolation formula? Yes OR No? **04**

(c) For certain component following data are available: **07**

2

07

Using Newton's forward difference interpolation method, predict the kinematic viscosity at 2.5 $^{\circ}C$.

OR

Q.4 (a) The variation of the specific heat Cp with temperature T for a substance is tabulated below:

T. °C		$0 \mid 10 \mid$	20	30 40 50 60 70		80	90	100
$\frac{KJ}{\frac{1}{2}}$ k g K	2.11 2.25 2.39 2.54 2.69 2.83 2.95 3.08 3.22 3.38 3.52							

Estimate the heat required to raise the temperature of 1 kg of substance from 30 $^{\circ}$ C to 90 $^{\circ}$ C using Simpson's $1/3^{r\bar{d}}$ rule.

- **(b)** Using Trapezoidal rule evaluate the integral **6** $\int x^2 e^x dx$ with **h** = 1.
- **(c)** Water is flowing through a pipe line 6 cm in diameter. The local velocities (u) at various radial positions (r) are given below: **07**

0

Estimate the average velocity \overline{u} , using Simpson's 1/3rd rule.

The average velocity is given by: $\bar{u} = \frac{2}{\pi} \int_{0}^{R}$ 2 0 $\overline{\mathbf{u}} = \frac{2}{\sqrt{2}} \mathbf{u} \mathbf{r} \, \mathbf{d} \mathbf{r}$ $=\frac{2}{R^2}\int u r dr$, where R = 3 cm

Q.5 (a) Consider general linear 2nd order partial differential equation given below.

$$
a\frac{\partial^2 C}{\partial r^2} + b\frac{\partial^2 C}{\partial r \partial z} + d\frac{\partial^2 C}{\partial z^2} + e\frac{\partial C}{\partial r} + f\frac{\partial C}{\partial z} + g C = h
$$

where, a, b, d, e, f, g and h are functions of r, z and their derivatives. How to check, whether given partial differential equation is parabolic, hyperbolic or elliptic?

(b) Solve the following $3rd$ order ordinary differential equation using Euler method. At time, t = 0, initial guess values are $x_{1} = 2$, $x_{2} = 16$, $x_{3} = 4$. Use time interval from 0 to 1 second, with step size h = 0.5 sec. **04**

$$
\frac{d^3x}{dt^3} + 4\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + 16x = 21
$$

(c) Gravity flow tank can be described by following two ordinary differential equation:

 $\frac{dv}{dt}$ = 0.0107 h - 0.00205 v² $\frac{1}{dt}$ = 0.0107 n – $\frac{dh}{dt} = 0.311 - 0.0624$ v $\frac{1}{\text{dt}}$ = 0.311 –

where, v is velocity (ft/Sec) and $h = h$ eight of liquid in tank(ft)

Integrate above equation between time $t = 0$ to $t = 60$ sec with $\Delta t = 20$ sec using Euler method. At time $t = 0$ sec, $v_0 = 3.4$ ft / sec and $h_0 = 2.05$ ft

3

03

07

03

04

- **Q.5 (a)** Describe Milne's predictor-corrector method. **03**
	- **(b)** Explain procedure to solve following heat conduction equation using finite difference **04** technique.

$$
k \frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}
$$

(c) Solve $\frac{dC}{dt} = \frac{1.5 - 4.5 \text{ C}}{1.5 - 4.5 \text{ C}}$ **d t 3** $=\frac{1.5-4.5 \text{ C}}{4.5}$ using Runge-Kutta 4th order method.

Data given: Time interval from $t = 0$ min to $t = 1$ min, with step size $h = 0.5$ min. At time $t = 0$ min, C_0 $= 1$ mol/m³.

07