Seat No.:		Enrolment No
	AT TECHNOLOGICAL STER-IV (NEW) - EXAMINATION	
Subject Code: 21409	007	Date: 30/05/2017
•	ied Thermal and Hydraulic E	Engineering
Time: 10:30 AM to 0	•	Total Marks: 70
Instructions:	,	_ 0 0002 = 1 = 200 = 200
1. Attempt all que	estions.	
	assumptions wherever necessary.	
3. Figures to the	right indicate full marks.	
		M
Short Questions		
The force per unit length is th		
	ompressibility (c) capillary (d) viscos	sity
The flow ratio in terms of Fra		
` '	0.5 (c) 0.6 to 0.9 (d) 1 to 1.5	
1 0	eat transfer take place according to	1
* *	ection (c) Radiation (d) None of the a	above
Air refrigerator works on	a (h) hall Calaman avala (a) hath a	and b
(d) none of the above	e (b) bell Coleman cycle (c) both a a	and b
Barometer is used to measure		
		a nines and shannel (d)
(d) difference of pressure bet	atmospheric pressure (c)pressure in	a pipes and channel (d)
Water is fluid.	ween two points in a pipe	
	an fluid (d) non Newtonian Fluid.	
The compression ratio of gas	* *	
(a)4 (b) 7 (c) 9 (d) 12	101110 10	
The capillary tube, as an expa	ansion device, used in	
1 1	water coolers (c) room air conditione	ers (d) all of the above
· · · · · · · · · · · · · · · · · · ·	at transfer is used in problem of	, ,
(a)Conduction (b) convection	(c) Radiation (d) conduction and co	onvection
Pitot-tube is used for measure	ement of	
(a) pressure (b) Flow (c) velo	· · · · · · · · · · · · · · · · · · ·	
Hydraulic gradient line (H.G.)	•	
	head (b) kinetic head and datum hea	ad (c) pressure head, kinetic
head and datum head (d) press	sure head and datum head	
The term $V^2/2g$ is known as		
(a) Kinetic energy (b) Pressu	are energy (c) kinetic energy per unit	weight (d) none of the above
Orifice-meter is used to measu	sure	
(a)Discharge (b) average velo	ocity (c) velocity at a point (d) pressu	re at a point

0.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a)

(b)

(c)

Q.2

Breaking jet in an impulse turbine is used

Explain Fourier's law of heat conduction.

Write a note on surface heat transfer co-efficient.

Differentiate between conduction, convection and radiation.

direction of runner (d) none of these

(a) to bring the runner to rest in a short time (b) to break the jet of water (c) to change the

03

04

07

	(c)	Derive expression for LMTD for parallel flow heat Exchanger.	07
Q.3	(a)	Briefly explain Net Positive Suction Head (NPSH).	03
	(b)	Explain construction and working of double acting reciprocating pump.	04
	(c)	Write a short note on construction and working of Pelton wheel turbine with neat sketch OR	07
Q.3	(a)	Write classification of turbines.	03
•	(b)	Define unit speed, unit power and unit discharge in case of turbine.	04
	(c)	Explain with a neat sketch the components of centrifugal pump.	07
Q.4	(a)	Explain simple vapour compression refrigeration system with neat sketch.	03
	(b)	Define dry air, Relative humidity, dry bulb temperature and dew point depression.	04
	(c)	Derive the expression for thermal efficiency of Rankine cycle.	07
		OR	
Q.4	(a)	What are the main components of simple gas turbine plants?	03
	(b)	What is refrigerant? What are the desirable properties of refrigerant?	04
	(c)	Explain the working of a simple air cooling system used for air craft.	07
Q.5	(a)	Explain newton's law of viscosity.	03
	(b)	Explain U-tube manometer.	04
	(c)	A clean glass tube of 2.5 mm internal Diameter is immersed in mercury (specific gravity=13.6).	07
		Determine the level of mercury in the tube in relation to the free surface of mercury outside the tube. Presume that for mercury –clean glass angle of contact $\theta = 130^{\circ}$ and for air-mercury	
		interface surface tension $\sigma = 0.48 \text{ N/m}$.	
		OR	
Q.5	(a)	Define density, dynamic viscosity and surface tension.	03
	(b)	State and derive Bernoulli's equation. Also write assumption made in it.	04
	(c)	Derive the equation to measure the quantity of water flowing through a venturimeter.	07
