1

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2140909

Subject Name: Field Theory

Time: 10:30 AM to 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Short Questions

- 1 The direction of vector normal to the plane containing two vectors is given by ______ of those two vectors.
 - a) dot product b) cross product c) addition d) vector triple product A sharp been in a cathode real tube is an example of
- A sharp beam in a cathode ray tube is an example of ______
 a) Volume charge b) point charge c) line charge d) surface charge

3 Choose equation which represents divergence theorem.

- a) $\oint \overline{D} \cdot \overline{ds} = \int_{v} (\nabla \cdot \overline{D}) dv$ b) $\oint \overline{E} \cdot \overline{dL} = \int_{v} (\nabla \cdot \overline{D}) dv$
- c) $\oint \overline{D} \times \overline{ds} = \int_{v} (\nabla \cdot \overline{D}) dv$ d) none of these.
- 4 The differential volume in spherical co-ordinate system is a) $r^2 \sin\theta dr d\theta d\phi$ b) $r^2 dr d\theta d\phi$ c) $dr d\theta d\phi$ d) $r \sin\theta dr d\theta d\phi$.
- 5 At any point on spherical surface, \overline{D} is always directed in the direction a) a_{θ} b) a_{ϕ} c) a_{r} d) a_{x} .
- 6 Work done along a path forming a closed contour is______a) Infinite b) maximum c) zero d) negative.
- 7 The flow of charges under the influence of electric field intensity results in to _____ current
 a) drift
 b) diffusion
 c) displacement
 d) radiation
- 8 Identify poisson's equation a) $\nabla^2 V = 0$ b) $\nabla^2 V = V$ c) $\nabla^2 V = \frac{-\rho_v}{\epsilon}$ d) $\nabla^2 V = -\rho_v \in$
- 9 The relation between \overline{B} and \overline{A} is a) $\overline{B} = \nabla \times \overline{A}$ b) $\overline{A} = \nabla \times \overline{B}$ c) $\overline{B} = \nabla \cdot \overline{A}$ d) $\overline{A} = \nabla \cdot \overline{B}$
- 10 Divergence of vector field never bea) zerob) positive scalarc) negative scalard) vector

11 $\nabla \times \overline{H} = \overline{J}$ is

- a) Point form of Ampere's circuit law
- b) Integral form of Ampere's circuit law
- c) Maxwell's first equations
- d) Faraday's law

12 The electric field can exert force on a)stationary charge onlyb) moving charge onlyc) stationary charge and moving charged) none of above

13 For time varying field a) $\Delta \times \overline{E} = 0$ b) $\nabla \times \overline{H} = 0$ c) $\nabla \times \overline{H} = D + \overline{J}$ d) $\Delta \times \overline{H} = 0$

Enrolment No.

MARKS

14

Total Marks: 70

	14	The unit of attenuation constant α is	
0.0	$\left(\right)$	a) neper/km b) rad/km c) degree/km d) decibel/km	0.2
Q.2	(a)	Define and Explain unit vectors in Cartesian and cylindrical co-ordinate systems.	03
	(b)	Explain dot product and cross product of two vectors with their one application.	04
	(c)	Derive the expression for \overline{E} at point P on the axis of charged circular ring, carrying a charge uniformly along its circumference with density ρ_L OR	07
	(c)	An infinite uniform linear charge $\rho_L = 2.0$ nC/m lies along the x axis in free space, while point charge of 8.0 nC is located at (0, 0, 1) Find E at (2, 3, 4).	07
Q.3	(a)	State Gauss's law. Also write limitations of Gauss's law	03
	(b) (c)	Find Divergence of $\overline{A} = 2xy a_x + za_z + yz^2 a_z$ at point P (2,-1,3) Obtain Expression for continuity in integral and differential form. OR	04 07
Q.3	(a)	Write Maxwell's equations for Static Electromagnetic field in point form and integral form.	03
	(b)		04
	(c)	Derive expression for electric field intensity and potential due to an electrical pole.	07
Q.4	(a)	Define curl and write significance to decide types of field on bases of curl.	03
	(b)		04
	(c)	Using Biot-savart law, find \overline{H} due to infinitely long straight conductor carrying current of I amp. OR	07
Q.4	(a)		03
	(b)	Given the potential V= 10 (X ² + XY) and a point P (2, -1, 3) on a conductor to free space boundary. Find V and \overline{E} at a point P.	04
	(c)	Explain Stoke's theorem with its mathematics expression.	07
Q.5	(a)	List out any four effects of EMI	03
	(b)	Explain the terms conduction current density and displacement current density.	04
	(c)	Discuss inductance. Explain self-inductance and mutual inductance. OR	07
Q.5	(a)	State the importance property of infinite transmission line.	03
	(b) (c)	 Explain Magnetic dipole moment and magnetization. A line with zero dissipation has R= 0.006ohms/m, L = 2.5 μH/m and C=4.45pF/m If line is operated at 10 Mhz. Find i) Characteristics impedance ii) attenuation constant iii) phase constant iv) velocity of propagation. 	04 07
		v) wave length	
