Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) - EXAMINATION – SUMMER 2017

Subject Code: 2140910 Date: 01/06/2017

Subject Name: Digital Electronics

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Q.1 Short Questions 1 Each 4 bit binary is called a				MARKS
1 Each 4 bit binary is called a (i) bit (ii)nibble (iii) byte (iv) word 2 The complement of a complement gives the (i)number itself (ii)1's complement (iii)2's complement (iv)zero 3 code is a reflective code. (i) Binary (ii)BCD (iii)Gray (iv)XS-3 4 A sequential logic circuit consists of (i)only flip flops (ii)only gates (iii)only combinational circuits (iv)flip flops and combinational circuits 5 The two popular alphanumeric codes are and (i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII 6 gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR	0.4			
(i) bit (ii)nibble (iii) byte (iv) word The complement of a complement gives the (i)number itself (ii)1's complement (iii)2's complement (iv)zero code is a reflective code. (i) Binary (ii)BCD (iii)Gray (iv)XS-3 A sequential logic circuit consists of (i)only flip flops (ii)only gates (iii)only combinational circuits (iv)flip flops and combinational circuits The two popular alphanumeric codes are and (i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR	Q.1	1		14
 The complement of a complement gives the (i)number itself (ii)1's complement (iii)2's complement (iv)zero code is a reflective code. (i) Binary (ii)BCD (iii)Gray (iv)XS-3 A sequential logic circuit consists of (i)only flip flops (ii)only gates (iii)only combinational circuits (iv)flip flops and combinational circuits The two popular alphanumeric codes are and (i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR 		1		
(i)number itself (ii)1's complement (iii)2's complement (iv)zero 3 code is a reflective code. (i) Binary (ii)BCD (iii)Gray (iv)XS-3 4 A sequential logic circuit consists of (i)only flip flops (ii)only gates (iii)only combinational circuits (iv)flip flops and combinational circuits 5 The two popular alphanumeric codes are and (i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII 6 gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR		2		
 code is a reflective code. (i) Binary (ii)BCD (iii)Gray (iv)XS-3 4 A sequential logic circuit consists of (i) only flip flops (ii) only gates (iii) only combinational circuits (iv) flip flops and combinational circuits 5 The two popular alphanumeric codes are and (i) ASCII & EBCIDIC (ii) GRAY & XS-3 (iii) XS-3 & BCD (iv) BCD & ASCII 6 gate is called an all or nothing gate. (i) AND (ii) OR (iii) NOT (iv) Ex-OR 		4		
(i) Binary (ii)BCD (iii)Gray (iv)XS-3 4 A sequential logic circuit consists of (i)only flip flops (ii)only gates (iii)only combinational circuits (iv)flip flops and combinational circuits 5 The two popular alphanumeric codes are and (i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII 6 gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR		3		
 A sequential logic circuit consists of (i)only flip flops (ii)only gates (iii)only combinational circuits (iv)flip flops and combinational circuits The two popular alphanumeric codes are and (i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR 		3		
 (i)only flip flops (ii)only gates (iii)only combinational circuits (iv)flip flops and combinational circuits The two popular alphanumeric codes are and (i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR 		4		
(iii)only combinational circuits (iv)flip flops and combinational circuits 5 The two popular alphanumeric codes are and (i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII 6 gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR		•	1 0	
(iv)flip flops and combinational circuits The two popular alphanumeric codes are and (i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR				
(i)ASCII & EBCIDIC (ii) GRAY & XS-3 (iii)XS-3 & BCD (iv) BCD & ASCII 6 gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR			(iv)flip flops and combinational circuits	
(iii)XS-3 & BCD (iv) BCD & ASCII 6 gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR		5 The two popular alphanumeric codes are and		
6 gate is called an all or nothing gate. (i) AND (ii)OR (iii)NOT (iv)Ex-OR			(i)ASCII & EBCIDIC (ii) GRAY & XS-3	
(i) AND (ii)OR (iii)NOT (iv)Ex-OR			(iii)XS-3 & BCD (iv) BCD & ASCII	
		6	gate is called an all or nothing gate.	
7 gate is called an inequality detector.				
		7		
(i) AND (ii)OR (iii)NOT (iv)Ex-OR		_		
8 A+B = B+A: AB = BA represents which law?		8		
(i)Associative (ii)Commutative				
(iii)Distributive (iv)Idempotence 9 The number of cells in a 3 variable K-map is .		0		
9 The number of cells in a 3 variable K-map is (i)4 (ii)8 (iii)15 (iv)12		9		
10 code is used for labelling the cells of K-map.		10		
(i) Binary (ii)BCD (iii)Gray (iv)XS-3		10	· · · · · · · · · · · · · · · · · · ·	
11 The adder speeds up process by eliminating the ripple carry.		11		
(i)Half (ii)Full (iii)Look ahead (iv)Ripple carry				
12 The gate is a basic comparator.		12	The gate is a basic comparator.	
(i) AND (ii)OR (iii)Ex-OR (iv)Ex-NOR				
13 The toggle mode for JK flip flop is		13		
(i)J=0,K=0 $(ii)J=1,K=0$ $(iii)J=0,K=1$ $(iv)J=1,K=1$		1.4		
The number of flip flops required for a decade counter is (i)3 (ii)4 (iii)5 (iv)10		14	1 1 1	
	0.2	(5)		02
Q.2 (a) Explain minterm and maxterm (b) Reduce using K-map (i) Σ m(5,6,7,9,10,11,13,14,15) 04	Q. 2	, ,	±	
(b) Reduce using K-map (i) Σ m(5,6,7,9,10,11,13,14,15) 04 (ii) Π M(1,5,6,7,11,12,13,15).		(D)		V 1
(c) State and prove De Morgan's theorems 07		(c)		07

	(c)	Explain a 4 input multiplexer.	07
Q.3	(a)	Convert (2598.675) ₁₀ to hex	03
	(b)	Add 27.125 to -79.625 using 12-bit 2's complement arithmetic.	04
	(c)	Write a short note on XS-3 code.	07
		OR	
Q.3	(a)	Convert 3A7 ₁₆ into a Gray code	03
	(b)	Perform the decimal subtraction 206.7-147.8 in 8421 BCD code.	04
	(c)	Write a short note on gray code	07
Q.4	(a)	Draw and explain with truth table Ex-OR and Ex-NOR gates	03
	(b)	Why NAND and NOR are known as universal gates?	04
	(c)	Discuss JK master slave flipflop. Explain race around condition.	07
		OR	
Q.4	(a)	Explain a full adder circuit	03
	(b)	Explain a parity generator and checker.	04
	(c)	Describe a 3-to-8 line decoder with logic diagram and truth table.	07
Q.5	(a)	Distinguish between combinational and sequential logic circuits.	03
	(b)	Discuss application of flip flops.	04
	(c)	Discuss applications of shift registers.	07
	` '	OR	
Q.5	(a)	State the basic difference between synchronous and asynchronous counters.	03
	(b)	Explain in brief modulus of counters.	04
	(c)	Explain the Digital to Analog converter with binary weighted resistors.	07
