Seat No.: _____

Enrolment No._____

		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-V (NEW) - EXAMINATION – SUMMER 2017	
Subi	oot (17
			1/
-		Name: Chemical Engineering Thermodynamics-II	
Time	e: 02	2:30 PM to 05:00 PM Total Marks:	70
Instru	ction	is:	
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
			MARKS
Q.1		Short Questions	14
	1	Define the excess properties.	
	2	Define an azeotrope.	
	3	Write modified Raoult's law and explain all terms involved.	
	4	List out various methods for the evaluation of partial molar properties.	
	5	In an ideal gas mixture, fugacity of a species is equal to its	
	6	Write down the phase rule.	
	7 8	How many parameters are involved in NRTL model? Define chemical potential.	
	9	Define partial molar properties.	
	10	Define activity coefficient.	
	11	What is the gamma-phi formulation of VLE?	
	12	For the chemical equilibrium $A + 2B \longrightarrow 2C$, the value of the equilibrium constant, K is 10. What is the value of the equilibrium constant for the reaction written in reverse? $2C \longrightarrow A + 2B$	
	13	Write an expression for the equilibrium constant for the formation of	
	10	two moles of ammonia gas (NH ₃) from nitrogen and hydrogen in their standard states $N_2(g) + 3H_2(g) - 2NH_3(g)$	
	14	Define the reaction coordinate.	
Q.2	(a)	constant.	03
and sugar	(b)	The following data gives the composition v/s total pressure for the	04
		system chloroform(1) / ethyl alcohol(2) at 328 K: $x_1 = 0.0331 = 0.9652$	
		P. kPa 40.84 84.88	
		Vapour pressures of chloroform and ethyl alcohol at 328 K are 82.35 and 37.30 kPa respectively. Estimate the constants in the Margules equation.	
	(c)	Explain the minimum boiling and maximum boiling azeotropes with suitable examples.	07
		OR	07
	(c)	coefficient.	
Q.3	(a) (b)		03 04

I

i) A system initially containing 2 mol of NH ₃ & 5 mol of O ₂ and undergoing the reaction 4NH ₃ (g) + 5O ₂ (g) \rightarrow 4NO(g) + 6H ₂ O(g) (ii) A system initially containing 3 mol of H ₂ S & 5 mol of O ₂ and undergoing the reaction 2H ₂ S(g) + 3O ₂ (g) \rightarrow 2H ₂ O(g) + 2SO ₂ (g) Derive the Gibbs-Duhem equation. OR Discuss Lewis-Randall rule and its significance. Explain any two methods for estimating fugacity of a pure gas. Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: CH ₃ COOH ₍₁₎ + C ₂ H ₅ OH ₍₁₎ \rightarrow CH ₃ COOC ₂ H ₅ (t) + H ₂ O ₍₁₎ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of Δ H ⁵ ₂₀₈ and Δ G ⁶ ₂₀₈ for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N ₂ (g) + 1.5 H ₂ (g) \rightarrow NH ₃ (g) with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\pounds_{2} = 1 - (1 + 1.292 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability. Show that for a binary system, Henry's law is valid for component '1'	07 03 04 07 03 04 07 07
$ 4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g) (ii) A system initially containing 3 mol of H_2S & 5 mol of O_2 and undergoing the reaction 2H_2S(g) + 3O_2(g) \rightarrow 2H_2O(g) + 2SO_2(g) Derive the Gibbs-Duhem equation. OR Discuss Lewis-Randall rule and its significance. Explain any two methods for estimating fugacity of a pure gas. Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: CH_3COOH_{(1)} + C_{2H_5OH_{(1)}} \rightarrow CH_3COOC_{2H_5(1)} + H_2O_{(1)} If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of \Delta H^{\circ}_{298} and \Delta G^{\circ}_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution.Write in brief a note on feasibility of chemical reactions.A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm3/mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm.The ammonia synthesis reaction written as:0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: \hat{e}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5} OR$	03 04 07 03 04 07
(ii) A system initially containing 3 mol of H ₂ S & 5 mol of O ₂ and undergoing the reaction 2H ₂ S(g) + 3O ₂ (g) \rightarrow 2H ₂ O(g) + 2SO ₂ (g) Derive the Gibbs-Duhem equation. OR Discuss Lewis-Randall rule and its significance. Explain any two methods for estimating fugacity of a pure gas. Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: CH ₃ COOH ₍₁₎ + C ₂ H ₅ OH ₍₁₎ \rightarrow CH ₃ COOC ₂ H ₅₍₁₎ + H ₂ O ₍₁₎ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of Δ H ⁹ ₂₉₈ and Δ G ⁹ ₂₉₈ for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000°C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\pounds_{\alpha} = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	03 04 07 03 04 07
undergoing the reaction $2H_2S(g) + 3O_2(g) \rightarrow 2H_2O(g) + 2SO_2(g)$ Derive the Gibbs-Duhem equation. OR Discuss Lewis-Randall rule and its significance. Explain any two methods for estimating fugacity of a pure gas. Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: $CH_3COOH_{(1)} + C_2H_5OH_{(1)} \rightarrow CH_3COOC_2H_{5(1)} + H_2O_{(1)}$ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\hat{\epsilon}_c = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR	03 04 07 03 04 07
$2H_2S(g) + 3O_2(g) \rightarrow 2H_2O(g) + 2SO_2(g)$ Derive the Gibbs-Duhem equation. OR Discuss Lewis-Randall rule and its significance. Explain any two methods for estimating fugacity of a pure gas. Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: CH ₃ COOH ₍₁₎ + C ₂ H ₅ OH ₍₁₎ \rightarrow CH ₃ COOC ₂ H ₅₍₁₎ + H ₂ O ₍₁₎ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\varepsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR	03 04 07 03 04 07
Derive the Gibbs-Duhem equation. OR Discuss Lewis-Randall rule and its significance. Explain any two methods for estimating fugacity of a pure gas. Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: $CH_3COOH_{(1)} + C_2H_5OH_{(1)} \rightarrow CH_3COOC_2H_{5(1)} + H_2O_{(1)}$ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\hat{\epsilon}_e = 1 - (1 + 1.290 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	03 04 07 03 04 07
OR Discuss Lewis-Randall rule and its significance. Explain any two methods for estimating fugacity of a pure gas. Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: $CH_3COOH_{(1)} + C_2H_5OH_{(1)} \rightarrow CH_3COOC_2H_{5(1)} + H_2O_{(1)}$ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH^o_{208} and ΔG^o_{208} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\epsilon_e = 1 - (1 + 1.290 \text{ KP})^{-0.5}$ OR	03 04 07 03 04 07
Explain any two methods for estimating fugacity of a pure gas. Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: CH ₃ COOH ₍₁₎ + C ₂ H ₅ OH ₍₁₎ \rightarrow CH ₃ COOC ₂ H ₅₍₁₎ + H ₂ O ₍₁₎ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\hat{\varepsilon}_{c} = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	04 07 03 04 07
Explain any two methods for estimating fugacity of a pure gas. Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: CH ₃ COOH ₍₁₎ + C ₂ H ₅ OH ₍₁₎ \rightarrow CH ₃ COOC ₂ H ₅₍₁₎ + H ₂ O ₍₁₎ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\hat{\varepsilon}_{c} = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	07 03 04 07
Acetic acid is esterified in the liquid phase with ethanol at 100°C (373.15 K) and atmospheric pressure to produce ethyl acetate and water according to the reaction: CH ₃ COOH ₍₁₎ + C ₂ H ₅ OH ₍₁₎ \rightarrow CH ₃ COOC ₂ H ₅₍₁₎ + H ₂ O ₍₁₎ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of Δ H° ₂₉₈ and Δ G° ₂₉₈ for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\hat{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR	03 04 07
water according to the reaction: $CH_3COOH_{(1)} + C_2H_5OH_{(1)} \rightarrow CH_3COOC_2H_{5(1)} + H_2O_{(1)}$ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\hat{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	04 07
CH ₃ COOH ₍₁₎ + C ₂ H ₅ OH ₍₁₎ \rightarrow CH ₃ COOC ₂ H ₅₍₁₎ + H ₂ O ₍₁₎ If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\varepsilon}_{e} = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	04 07
If initially there is one mole of each acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\varepsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5} = 0.0391$ OR	04 07
the mole fraction of ethyl acetate in the reacting mixture at equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	04 07
equilibrium. The value of ΔH°_{298} and ΔG°_{298} for the above reactions are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5} \frac{1}{OR}$ Discuss the criteria for equilibrium and stability.	04 07
are - 3640 J and - 4650 J respectively. Assume that the heat of reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\varepsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5} OR$ Discuss the criteria for equilibrium and stability.	04 07
reaction is independent of temperature and the liquid mixture behaves as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5} OR$ Discuss the criteria for equilibrium and stability.	04 07
as ideal solution. Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5} \frac{OR}{OR}$	04 07
Write in brief a note on feasibility of chemical reactions. A gas obeys the equation P (V - b) = RT. For this gas b = 0.0391 dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: 0.5 N _{2(g)} + 1.5 H _{2(g)} \rightarrow NH _{3(g)} with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{=0.5}$ OR Discuss the criteria for equilibrium and stability.	04 07
dm ³ /mol. Calculate the fugacity and fugacity coefficient of the gas at 1000 °C and 1000 atm. The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\hat{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5} OR$ Discuss the criteria for equilibrium and stability.	07
1000 °C and 1000 atm. The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\hat{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	
The ammonia synthesis reaction written as: $0.5 N_{2(g)} + 1.5 H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\hat{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5} \frac{OR}{OR}$ Discuss the criteria for equilibrium and stability.	
0.5 $N_{2(g)}$ + 1.5 $H_{2(g)} \rightarrow NH_{3(g)}$ with 0.5 mol nitrogen and 1.5 mol hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	
hydrogen as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that: $\dot{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	03
that the equilibrium mixture is an ideal gas, show that: $\dot{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	03
$\dot{\epsilon}_e = 1 - (1 + 1.299 \text{ KP})^{-0.5}$ OR Discuss the criteria for equilibrium and stability.	03
OR Discuss the criteria for equilibrium and stability.	03
Discuss the criteria for equilibrium and stability.	03
Show that for a binary system Henry's law is valid for component 'l'	
Show that for a officially system, fremy shaw is take for component	04
then Lewis Randall rule is valid for component '2'.	
Explain PT diagram and write a brief note on retrograde condensation	07
with its application.	
Discuss the effect of temperature and pressure on chemical potential.	03
Discuss about liquid – liquid equilibrium (LLE).	04
Assuming the validity of Raoult's law, do the following calculations	07
for the system of acetone (1), acetonitrile (2) and nitromethane (3).	
i) Given $x_1 = 0.30$ and $x_2 = 0.40$, $T = 75^{\circ}C$, find y_1 and P.	
In Siven $y_1 = 0.45$ and $y_2 = 0.55$, $1 = 80^{\circ}$ C, find x_1 and F .	
OR	
Write a short note on flash vapourization.	0.3
	04
equations.	
El de la contrat de la contrata de l	07
VLE data.	
,	ii) Given $y_1 = 0.45$ and $y_2 = 0.35$, $T = 80^{\circ}$ C, find x_1 and P. InP ^{sat} = A - [B / (t + C)] where P ^{sat} is in kPa and t is in °C. Component A B C Acetone (1) 14.3916 2795.82 230.0 Acetonitrile (2) 14.2724 2945.47 224.0 Nitromethane (3) 14.2043 2972.64 209.0 OR Write a short note on flash vapourization. Draw block diagrams for DEW P calculations. Write all necessary equations. Discuss various methods for checking the consistency of experimental