
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) - EXAMINATION – SUMMER 2017				
			Date: 05/05/2017	
•		ame: Control System Engineering	54000	
• • • •			Fotol '	Marks: 70
Instructions:			IUtal	viai K5. 70
mstruc		ttempt all questions.		
		lake suitable assumptions wherever necessary.		
		igures to the right indicate full marks.		
			-	MARKS
Q.1		Short Questions		14
X ¹²	1	Define open loop and close loop control system.		
	2	Write equation of mason gain formula.		
	3	How 'type' of the system can be defined?		
	4	Define transfer function.		
	5	Define proportional control.		
	6	Define frequency domain.		
	7	Define lead compensators and lag compensators.		
	8	Define term stability in context of control engineering.		
	9	Give approx value of damping factor in normal control sys	stem	
	10	Define signal flow graph.		
	11	Why do you use log scales on X-axis?		
	12	Write any two frequency domain specification.		
	13	Write any two time domain specification.		
	14	Write standard characteristic equation for 2 nd order system		
Q.2	(a)			03
	(b)			04
	(c)	Explain following terms with respect to second order syste	m.	07
		Draw necessary diagrams.		
		• Delay Time		
		 Rise Time Deale Time 		
		 Peak Time Stoody state street 		
		 Steady state error Settling Time 		
		 Settling Time OR 		
	(c)			07
	(C)	connected to a DC supply. Obtain the transfer function		07
		between capacitor voltage and supply voltage.		
~ ~				
Q.3	(a)		c	03
	(b)	Explain types of the system and steady state error constant the same.	s for	04

(c)

Determine over all transfer function of the system using block diagram reduction technique.

OR

(a) Define following terms. 03 Q.3 1) State variable 2) State trajectory 3) State vector Explain the effect of integral control action on system **(b)** 04 performance. (c) The close loop transfer function of a given second order 07 system is $100/(S^2 + 10S + 100)$. Determine damping ratio, natural frequency, delay time, rise time, settling time and peak over shoot. Write short note on "feedback control system" **Q.4** 03 (a) Derive mathematical model of any mechanical system of your **(b)** 04 choice. $S^{6}+4S^{5}+3S^{4}-16S^{2}-64S-48=0$ Check the stability of the given 07 (c) charecteristic equation using Routh method. OR Write short note on marginally stable system. Q.4 **(a)** 03 (b) Explain the effect of derivative control action on system 04 performance. For control unity feedback system G(s) =07 (c) $800(S+2)/S^{2}(S+10)(S+40)$. Sketch the bode plot. Explain gain margin and phase margin. **Q.5** 03 (a) Write the transfer function of second order unity feedback 04 **(b)** system for step response. Explain briefly each parameter of equation. (c) For unity feedback control system G(s) = K/S(S+6)(S+9). Draw 07 its root locus. OR Write difference between state space analysis and transfer Q.5 (a) 03 function. Briefly explain about polar plots. **(b)** 04 Explain in detail the Nyquist criteria to predict stability of (c) 07 system.

2

07