Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (NEW) - EXAMINATION – SUMMER 2017

Sub	ject	Code: 2153502	Date:01/05	5/2017
Sub Tim Instr	ject 1e:02 uctio	Name: Introduction to Heat transfer 2:30 PM to 05:00 PM ns:	Total Ma	rks: 70
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		MARKS
0.1		Short Questions		14
X	1	Free convection flow depends on all of the above except		01
		 (a) Density (b) Coefficient of viscosity (c) Gravitational force (d) velocity 		
	2	Provision of fins on a given heat transfer surface will be more if	there are	01
		(a) fewer number of (b) fewer number of thick fins thin fins		
		(c) large number of (d) large number of thick fins thin fins		
	3	Up to the critical radius of insulation	hast loss	01
		(a) added insulation will (b) added insulation will decrease increase heat loss	fieat ioss	
		(c) convection heat loss (d) heat flux will decrease		
		will be less than conduction heat loss		
	4	Inspite of large heat transfer coefficient in boiling liquids, fin advantageously when the entire surface is exposed to	s are used	01
		(a) nucleate boiling (b) film boiling		
	=	(c) Transition boiling (d) All modes of boiling	a atuai alat	01
	3	line, without affecting the intervening medium, is called	a straight	01
		(a) conduction (b) convection		
	((c) radiation (d) All of these		01
	0	Assumption made in Fourier's law is that the heat flow (a) Is in steady state (b) Through a solid in one direction	oncional	01
		(a) Is in steady state (b) Through a solid in one dim (c) Both (a) $\&$ (b) (d) None of the above	lensional	
	7	Unit of thermal diffusivity		01
	'	(a) $m/h^{0}C$ (b) m^{2}/h		01
		(c) m/h (d) m^2/h^0C		
	8	Floating heads are provided in heat exchanger		01
		(a) increase pressure(b) decrease pressure drop		
		(c) regulate the flow (d) avoid deformation of the to thermal expansion	tubes due	

9 Ratio of heat transfer rate to the rate at which heat would be conducted 01 within the fluid under a temperature gradient is called

10	(a) Reynold's no(c) Prandalt's noHeat conduction doesn't occurs	(b) Nusselt no(d) Grashof's no	
	(a) If a physical body is impermeable	(b) If the parts of a body are not in motion relative to one another	
	(c) If the bodies are kept in vacuum	(d) If the temperature of the two bodies are identical	
11	For steady flow and constant	value of conductivity, the temperature	01
	distribution for a plane wall is		
	(a) parabolic	(b) linear	
10	(c) logarithmic		01
12	Barries are provided in heat excr	(h) decrease pressure drop	01
	drop	(b) decrease pressure drop	
	(c) increase rate of heat transfer	(d) decrease vibration	
13	In film type condensation ov	er a vertical tube local heat transfer	01
10	coefficient is		
	(a) inversely	(b) directly proportional to local film	
	proportional to	thickness	
	local film thickness		
	(c) equal to local film thickness	(d) independent of local film thickness	
14	A sphere of radius \mathbf{R}_1 is enclose	ed in a sphere of radius \mathbf{R}_2 . The view (or	01
T-1	shape) factor for radiative heat t	ransfer of the outer sphere with respect to	01

۶P respect the linear sphere is

(c) 1

(b)
$$\frac{R_2}{R_1 + R_2}$$

(d)
$$\left(\frac{R_1}{R_2}\right)^2$$

- Explain Fourier's law for heat conduction Q.2 **(a)**
 - Derive equation to calculate the rate of heat flow through sphere **(b)**
 - A gas filled tube has 2 mm inside diameter and 25 cm length. The gas is (c) heated by an electrical wire of 0.05 mm located along the axis of the tube. The heat given by the electrical wire is 2 W. If measured wire and inside tube wall temperature are 175 °C and 150 °C respectively. Find the thermal conductivity of the gas filling the tube.
 - OR
 - (c) A steel ball of 50 mm diameter is cooled by exposing it to an air stream at 07 320 K. Under these conditions the convective heat transfer coefficient 100 W/m^2 K. Estimate the time needed to cool the steel ball from 1120 to 520 K. Properties of steel: density = 8000 kg/m^3 and heat capacity = 450 J/kgK. Due to the high thermal conductivity of steel there are no temperature gradients within the ball.

03

04

07

- Explain natural convection phenomenon. 0.3 (a)
 - (b) Give the physical significance of (1) Biot number (2) Grashof number.
 - A plate having 10 cm^2 area side is hanging in the middle of a room of 100 (c) m^2 total surface area. The plate temperature and emissivity are respectively 800 K and 0.6. The temperature and emissivity values for the surfaces of the room are 300 K and 0.3 respectively. Find total heat loss from the two surfaces of the plate.

OR

- 0.3 Which side of shell and tube heat exchanger will you select to pass 03 (a) corrosive, viscous and high pressure fluid. Write short note on Reynold's analogy **(b)** 04
 - Two large parallel plate one at 727 0 C with emissivity $e_1 = 0.8$ and another 07 (c) at 227 ^oC with emissivity $e_2 = 0.4$. An aluminum radiation shield with an emissivity $e_3 = 0.05$

On both sides is placed between the plates. Calculate the percentage reduction in heat transfer rate between the two plates as a result of the shield.

- Define: (1) Emissivity (2) Black body (3) Grey Body 03 **O.4** (a)
 - **(b)** Prepare SRS index for attendance management system.
 - In a double pipe counter-current heat exchanger, the of fluids are as (c) follows. (i) Inlet temperature of hot fluid = $100 \, {}^{0}$ C. (ii) outlet temperature of hot fluid = 60 0 C. (iii) inlet temperature of cold fluid = 40 0 C (iv) cold fluid outlet temperature = 80 ⁰C. During operation, due to fouling inside the pipe, the heat transfer rate reduced to half of the original value. Assuming the flow rates and the physical properties of the fluid don't change, Calculate LMTD (in ⁰C) in the new situation.

OR

0.4	(a)	State and derive Kirchoff's law for radiation	03
C.	(b)	Write a brief on plate heat exchanger	04
	(c) (c)	Air is flowing at a velocity of 3 m/s perpendicular to a long pipe. The outer diameter of the pipe is $d = 6$ cm and the temperature at the outside of the pipe is maintained at 100 °C. The temperature of the air far from the tube is 30 °C. Data for air : Kinematic viscosity = 18 x 10 ⁻⁶ m ² /s; Thermal conductivity , k = 0.03 W/(m K). using the Nusselt number correlation : Nu = h d/k = 0.024 x Re ^{0.8} , calculate heat loss per unit length from pipe to air.	07

Q.5	(a)	Define capacity and economy of evaporator.	03
	(b)	Differentiate filwise and dropwise condensation	04

- (b) Differentiate filwise and dropwise condensation
- A chemical having specific heat of 3.3 kJ/kg K flowing at the rate of (c) 20000 kg/h enter a parallel flow heat exchanger at 120 °C. The flow rate of cooling water is 50000 kg/h with an inlet temperature of 20 °C. the heat transfer area is 10 m^2 and the overall heat transfer co-efficient is 1050 W/m^2 K. take for water, specific heat capacity = 4.186 kJ/kg K. calculate (1) effectiveness of the heat exchanger (2) the outlet temperature of chemical.

03

04 07

04

07

07

Q.5	(a)	Explain Duhrings rule	03
-	(b)	Differentiate between forword feed and backward feed in a multiple effect	04
		evaporator with a neat sketch	
	(c)	An aqueous solution of a solute is concentrated fro 5 % to 20 % (mass	07

(c) An aqueous solution of a solute is concentrated fro 5 % to 20 % (mass basis) in a single-effect short tube evaporator. The feed enters the evaporators at a rate of 10 kg/s and at a temperature of 300 K. steam is available at a saturation pressure of 1.3 bar. The pressure in the vapour space of the evaporator is 0.13 bar and the corresponding saturation temperature of steam is 320 K. if the overall heat transfer coefficient is 5000 W/ m² K. calculate the (a) steam economy (b) Heat transfer surface area

Data: Heat of vaporization of saturated steam (1.3 bar, 380 K) = 2000 kJ/kg. Enthalpy of saturated steam (1.3 bar, 320 K) = 2200 kJ/kg, enthalpy of feed (5 %, 300 K) = 80 kJ/ kg. Enthalpy of concentrated liquor (20 %, 325 K) = 400 kJ/kg. boiling point elevation is 5 K.
