mixture.

Enrolment No._____

		GUJARAT TECHNOLOGICAL UNIVERSITY			
Su	hiec	BE - SEMESTER-VI (NEW) - EXAMINATION – SUMMER 2017 t Code: 2160506 Date: 10/05	/2017		
Su	hiec	t Name: Chemical Reaction Engineering - I	/2017		
Ti	me:	10:30 AM to 01:00 PM Total Mar	ks: 70		
Ins	tructi	ons:			
	1	. Attempt all questions.			
	2	. Make suitable assumptions wherever necessary.			
	3	. Figures to the right moleate full marks.	MARKS		
01		Short Questions	14		
V .1	1	List two important pieces of information needed for design of reactor as predicted by thermodynamics	01		
	2	Discuss the basis for the classification of chemical reactions	01		
	3	Define single and multiple reactions	01		
	4	Define Elementary and Non-elementary reactions with example	01		
	5	Define the general unit of rate constant K for any order of reaction	01		
	6	Discuss the assumptions made in the Collision Theory	01		
	7	Back mixing is allowed in MFR – State true or false	01		
	8	Discuss the factors affecting the rate of reaction for zero order reaction	01		
	9 10	Define homogenous catalyzed reactions State the necessary and sufficient condition to exist for an ideal plug flow reactor	01 01		
	11	State the condition to be maintained while connecting Plug flow reactors of different size in parallel	01		
	12	State the use of catalyst in product distribution for reactions in parallel	01		
	13	Define space time and space velocity	01		
	14	Define recycle ratio and what will be the behaviour when $R = 0$	01		
Q.2	(a)	State three rules for best arrangement or effective use of the set of given ideal reactors			
	(b)	Discuss the theory of maximization of rectangle for finding the optimum volume of MFR in series	04		
	(c)	Derive the performance equation for Plug Flow reactor OR			
•	(c)	Derive the process design equation for Mixed Flow reactor	07		
Q.3	(a)	Write a note on temperature dependency of rate constant according to Arrhenius law	03		
	(b)	Compare the temperature dependency theory of Arrhenius law with that of Collision and Transition state theory	04		
	(c)	Establish the relation between conversion – time and reaction rate constant using the half-life method for irreversible unimolecular type reactions using integral method of analysis	07		
		OR			
Q.3	(a)	Discuss the method for classification of chemical reactions with example	03		
	(b)	Compare the Integral and Differential method of analysis for analyzing reaction kinetics data	04		
	(c)	Explain the total pressure data analysis in a constant volume system and also establish relation of partial pressure of gaseous component in reaction	07		

- Q.4 (a) State the different ways to define the reaction rate
 - (b) Discuss the theory of equal size mixed reactors connected in series and derive equation in terms of total residence time for N reactors in series.
 - (c) Using following data for the bimolecular second-order formation of methylethyl ether in ethyl alcohol solution, Calculate the activation Energy and frequency factor for this reaction.

Temp,°C	0	6	12	18	24	30				
К.	5.6×10^5	11.8×10^{5}	24.5×10^5	48.8×10^5	100×10^{5}	208×10^{5}				
lt/mol.sec										
OR										

- Q.4 (a) Discuss autocatalytic reaction with conversion-time and rate-concentration 03 curves
 - (b) Derive the design equation for Recycle reactor with diagram in terms of 04
 Volume requirement
 - (c) After 8 minutes in a batch reactor a reactant ($C_{A0} = 1 \text{ mol/lit}$) is 80% **07** converted, after 18 minutes the conversion is 90%. Find a rate equation to represent the reaction
- Q.5 (a) Define the Overall fractional yield and Instantaneous fractional yield for the decomposition of A into product R
 - (b) Discuss the Qualitative discussion for product distribution for reaction in 04 series $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ considering that it is a light induced reaction.
 - (c) Derive a relation for overall fractional yield in PFR for following reaction in parallel. 07

 $A \xrightarrow{k1}{k2} R \text{ (desired)}$ S (undesired) OR

Q.5 (a) Describe the optimum temperature progression and its application
(b) Show the graphical representation of energy balance equation for adiabatic operation
(c) A first order reaction is to be treated in a series of two mix reactors. Show that the total volume of the two reactors is minimum when reactors are of equal size.

03