Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2161403 Date: 01/05/2017

Subject Name: Food Engineering Operations - II

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Short Questions

14

- 1 What is magma?
- 2 Define flooding.
- 3 What is the purpose of baffled vessel in agitation of liquid products?
- 4 What is the driving force for crystallization of solute material?
- 5 State the indicator micro-organism for UHT milk sterilization.
- **6** Gentle agitation during milk heating is recommended during batch pasteurization. Justify.
- 7 As the reflux ratio in a continuous distillation column is increased the number of stages
 - a) increases

b) decreases

c) remains constant

- d) exponentially increases
- **8** Define cavitation of flowing liquids.
- **9** What are limitations of batch pasteurization?
- 10 For a mixture of n-hexane and n-heptane calculate fractions of more volatile component in vapor phase having fractions in liquid as 0.24 and value of relative volatility 2.14.
- 11 Define Clarifixation.
- 12 Enlist the factors affecting on gravity separation.
- 13 What should be the value of selectivity for possibility of liquid-liquid extraction?

	14	Which of the following is used as a filter aid?		
		a) Magma b) Sodium		
		c)diatomaceous earth d) none of these		
Q.2	(a)	Calculate the power requirement in hp for homogenizer if liquid produc	t is 03	
		flowing at the rate of 3000 liter/h and homogenizing pressure of 3500 ps	i.	
	(b)	Ripened Guava puree is sterilized at 108°C in a can to reduce the num	ber 04	
		of heat resistant organism ($D_{120}=0.24$ minutes, $Z=10^{0}C$) from an ini	tial	
		count of 1.2 million per can to a probability of survival of 1 in million.		
		i) Determine D ₁₀₈ value of this organism.		
		ii) What will be the total processing time for the stated condition?		
	(c)	Discuss the advantages and limitations of Direct heating system in for	ood 07	
		sterilization plants.		
		OR		
	(c)	Explain process flow line for milk uperization with a diagramma	atic 07	
		representation.		
Q.3	(a)	Derive Rayleigh's equation for differntial distillation.	03	
	(b)	Describe in brief about plate and frame filter with figure.	04	
	(c)	An aqueous ethanol solution, containing 40% in weight of the vola	tile 07	
		component, is continuously fed to a rectification column with an object	ive	
		to obtain two streams containing 88% and 5% in weight of ethanol. Also	, it	
		is desired to obtain a third stream containing 30% of the alcohol that	t is	
		introduced, with feed its ethanol content 75% in weight. Calculate	the	
		number of theoretical plates for reflux ratio as 2. Feed is at its boil	ing	
		point.		
		OR		
Q.3	(a)	Define reflux ratio and write in brief on optimum reflux ratio.	03	
	(b)	Explain briefly the selection criteria for solvent to be used for liquid-liq	uid 04	
		extraction.		
	(c)	Enumerate types of Unit operations. Derive an expression of Stripping	07	
	, .	section Operating line for fractional distillation.	a -	
Q.4	(a)	Write a short note on rotocel extractor.	03	

	(b)	Explain in detail about cake filtration.		
	(c)	(c) Draw and explain equilateral triangular diagram for a ternary system		
		which a pair of solvent used for extraction and solvent present in feed are		
		partially miscible.		
		OR		
Q.4	(a)	Write a short note on filter aid.	03	
	(b)	Draw and explain Swenson walker crystallizer.	04	
	(c)	What is crystallization? Explain in detail about super saturation, nucleation	07	
		and crystal growth stages of crystallization.		
Q.5	(a)	For cans of spinach puree, the F_0 = 1.85 min. at 121.1°C and Z=15°C.	03	
		Neglecting heat up time, determine the process time for adequate		
		sterilization at 105°C at the centre of the can.		
	(b)	Briefly explain the working of disc bowl cream separator.	04	
	(c)	Enlist different techniques used in food freezing. Explain continuous	07	
		freezer with its operation mechanism and advantages over other methods.		
		OR		
Q.5	(a)	Briefly explain bactofugation treatment.	03	
	(b)	Compute the fat separation velocity in a centrifuge if diameter of fat	04	
		globule is $5\mu m$, radial position is $0.25\ m$ in centrifuge and rotating speed of		
		disc is 5500 rpm. (Density difference - 78 and Absolute viscosity - 1.45		
		cp).		
	(c)	Explain homogenization process with diagrammatic representation. What	07	
		will be the effect of homogenization on milk characteristics?		
****	****	*************************		
		արարարարարարարարարարարարարարարարարարար		