Seat No.:	Enrolment No.
Deat 110	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2161707 Date: 27/04/2017

Subject Name: Control System Design

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1		Short Questions (2 marks each)	14
	1	Comment on stability of LTI system.	
	2	State properties of State Transition Matrix	
	3	Derive transfer function of RLC circuit.	
	4	Prove that the Eigen values of system matrix A are roots of characteristics equations.	
	5	How to find transfer function if the state space model of a system is given?	
	6	Comment on gain margin.	
	7	Comment on phase margin.	
Q.2	(a)	State Ackermann's formula.	03
	(b)	What is controllable canonical form?	04
	(c)	Design a state feedback controller for which the state space mode	07
		is given by $\frac{dx}{dt} = Ax + Bu = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$ and the desired closed	
		loop poles are -4±4j. This is a state regulation problem.	
		OR	
	(c)	Design a tracking control in state space for a system given by transfer function $\frac{Y(s)}{U(s)} = \frac{1}{s+3}$ for desired characteristics equation	07
		$s^2 + 5s + 25 = 0$. Assume that the reference is constant.	
Q.3	(a)	State Liapunav stability criteria.	03
	(b)	Explain positive definite functions with example.	04
	(c)	Write short note on design of state observer and its importance.	07
		OR	
Q.3	(a)	Comment on diagonal canonical form.	03
	(b)	Give the general transfer function of lag compensator.	04
	(c)	Comment on gain margin and phase margin. Also write short note on the design of lead compensator in frequency domain with mathematical arguments.	07
Q.4	(a)	Comment on observable canonical form.	03
ζ	(b)	Give the general transfer function for lead compensator.	04
	(c)	For a transfer function of a system $G(s) = \frac{1}{s(s+2)}$ design a lead	07
		compensator to achieve $K_v \ge 10$ and Phase Margin $\Phi M \ge 60^\circ$ OR	0.5
Q.4	(a)	Explain linear dependence and independence of vectors.	03
	(b)	Solve the state space equation with any method.	04
	(c)	For a transfer function of a system $G(s) = \frac{K}{s^2}$ design a lead	07

		compensator so that settling time $t_s \le 4$ sec and peak overshoot \le	
		20%. Use root locus technique.	
Q.5	(a)	Comment on how to check the positive definiteness of a given	03
		function with suitable example.	
	(b)	Comment on stability of inverted pendulum system.	04
	(c)	Discuss in detail about the tracking of constant reference for a	07
		given state space system.	
		OR	
Q.5	(a)	Draw the block diagram of well known state space equation.	03
	(b)	Derive the model of separately excited DC motor.	04
	(c)	State algebraic Riccatti equation and write short note on LQR design.	07
