Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2170102

Subject Name: Theory of Heat Transfer

Time: 02.30 PM to 05.00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain briefly the various modes of heat transfer and enumerate the basic laws 07 which govern the heat transfer.
 - (b) Derive the expression for heat conduction through a composite cylinder with both conduction and convection. Also define overall heat transfer coefficient for the same system arrangement.
- Q.2 (a) Derive the expressions for fin efficiency and fin effectiveness for heat 07 conduction for a fin loosing the heat from the tip.
 - (b) Explain the dimensionless numbers used in heat transfer with their respective 07 importance in heat transfer.

OR

- (b) A turbine blade made of stainless steel k= 29W/m°C is 60mm long, 500mm² 07 cross sectional area and 120mm perimeter. The temperature of the root of blade is 480°C and it is exposed to products of combustion passing through the turbine at 820°C. If the film coefficient between the blade and the combustion gases is 320 W/m²°C, calculate: temperature at the middle of the plate and rate of heat flow from the blade.
- Q.3 (a) What is meant by transient heat conduction? Derive the general unsteady state 07 heat conductions equation for solids considering a lump.
 - (b) Hot air at temperature of 65°C is flowing through a steel pipe of 120mm diameter. The pipe is covered with two layers of different insulating materials of thickness 60mm and 40mm, and their corresponding thermal conductivities are 0.24 and 0.4 W/m°C. The inside and outside heat transfer coefficients are 60 W/m²°C and 12 W/m²°C respectively. The atmosphere is at 20°C. Find the rate of heat loss from 60 m length of pipe.

OR

- **Q.3** (a) Air entering at 2 bar pressure and bulk temperature of 200°C is heated flows **07** through a tube with a diameter of 25.4 mm at a velocity of 10 m/s. calculate the heat transfer per unit length of the tube if constant heat flux condition is maintained at the wall and wall temperature is 20°C above the air temperature all along the length of the tube. At mean film temperature properties of air are 1.493kg/m³, k = 0.0386W/m°C, $\mu = 2.57 \times 10^{-5}$ NS/m² and Cp = 1025 J/kg°C. Average Nusselt number is given by Nu = 0.023(R_e)^{0.8}(P_r)^{0.4}
 - (b) Classify the types of heat exchanger in detail.
- Q.4 (a) The flow rates of hot and cold water streams running through a parallel flow heat exchanger are 0.2kg/s and 0.5kg/s respectively. The inlet temperatures on the hot and cold sides are 75°C and 20°C respectively. The exit temperature of hot water is 45°C. If the individual heat transfer coefficients on both sides are 650W/m²°C, calculate overall heat transfer coefficient and the area of the heat exchanger.
 - (b) Derive the expression for log mean temperature difference for counter flow heat 07

Date: 02/05/2017

07

exchangers.

OR

- **Q.4** (a) 16.5 kg/s of the product is at 650°C ($C_p = 3.55 \text{ kJ/kg}^\circ\text{C}$), in a chemical plant, are to be used to heat 20.5kg/s of incoming fluid from 100°C ($Cp = 4.2 \text{ kJ/kg}^\circ\text{C}$). If the overall heat transfer coefficient is 950 W/m²°C and the installed heat transfer surface is 44 m², calculate fluid outlet temperatures for the counter flow heat exchanger using Effectiveness-NTU method.
 - (b) With proper reasons and conditions justify the provision of fins in field **07** applications. Under what circumstances fins may be applicable?
- Q.5 (a) Derive the expression of define radiation heat transfer. State and prove 07 Kircoff's law of radiation.
 - (b) Define following terms: total emissive power, emissivity, black body, opaque 07 body, white body, grey body and intensity of radiation.

OR

Q.5	(a)	Derive general heat conduction equation in cylindrical coordinates.	07
	(b)	Explain the methods of boiling in brief.	07
