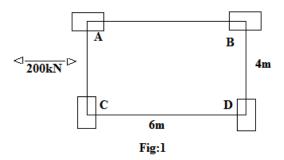
Se	at No	.: Enrolment No	_
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-VII (NEW) - EXAMINATION – SUMMER 2017	
St	ıbied	et Code: 2170607 Date: 02/05/2017	
	•	et Name: Design of Reinforced Concrete Structures	
	-	02.30 PM to 05.30 PM Total Marks: 70	
	struct		
111		1. Attempt all questions.	
		2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks.	
		4. Use of IS:800, IS:875,IS:456,IS:3370, IS:1343,SP-16, IS 1893 and IS 13920)
		and steel table are permitted.	
Λ 1		5. Use M20 grade of concrete and Fe 415 steel if not given any where.	1.1
Q.1		Draw a typical layout of a G+3 residential building. Prepare structural layout and plot load distribution diagrams for typical floor. Design and detail a typical	14
		continuous beam or a typical column of the chosen building.	
Q.2	(a)	A seven storied building, 20m X 30m plan dimensions and an overall height of	07
V. -	(u)	30m is to be designed at Ahmedabad city. Columns are spaced at 5m c/c in	07
		both directions. The building has 7 stories of height 4 m each. Take plinth is at	
		1m above G.L having no plinth beams but consider beams at 1m below G.L	
		and footings are provided at 2 m below G.L. Assume overall depth of all	
		beams = 500 mm and slab thickness 150 mm. Consider life of building 100	
		years, Category = 3 and Topography = plane. Compute wind loads acting on	
		an internal frame at node points and plot wind pressure diagram as per	
	(3.)	provisions of IS: 875(Part-III).	
	(b)	Explain the followings briefly with necessary sketches.	0.2
		(1)Various types of joints can use in water tanks.(2) 'Strong column-Weak beam' design concept.	03 04
		OR	V 4
	(b)		07
Q.3	(6)	A cantilever retaining wall is designed to retain the earth 5 m high behind the	14
•		wall. The unit weight of soil is 18 kN /m ³ and angle of internal friction is	
		22°. The bearing capacity of soil is 130 kN/m² and coefficient of friction	
		between base and soil is 0.4. Use M20- Fe 415. Assume depth of foundation is	
		as 1 m. Fix the dimensions of retaining wall and design only stem. Also carry	
		out stability checks.	
0.2		OR	1.4
Q.3		,	14
		basic dimensions of the various elements. Angle of repose of soil is 30°. SBC	
		of soil is 180 kN/m ² and density of soil is 18 kN/m ³ . Friction coefficient	
		between soil and concrete is 0.55. Design and detail the stem of retaining wall.	
0.4		Use M20- Fe 415. Carry out usual stability checks. Fix the dimensions of circular overhead water tank container with flat	14
V. T		bottom for a capacity of 5 lakh liters. Design and detail top spherical dome,	17
		top ring beam and cylindrical wall of the container. Use M25 grade concrete	
		and Fe 415 steel.	
		OR	
Q.4		Fix the basic dimensions of intze tank container of an elevated water tank to	14
-		store 5 lakh litres water. Height of the staging is 16 m up to the bottom of the	
		tank. Wind load = 1.5 KN/m^2 throughout the height. Design and detail (i) Top	

Q.5 (a) Design an interior panel of a flat slab of panel size 5m x 5m without providing 07

ring beam (ii) cylindrical wall. Use M30 & Fe415.


drop and column head. Size of columns = 300mm x 400 mm, Live load = 4 kN/m², Floor finish = 1 kN/m², Height of column 4m above and below slab. Use M20 concrete and Fe 415 steel.

(b) For typical floor shown in **Fig:1**, Find out (1) Centre of mass (2) Centre of stiffness (3) Eccentricity. Consider all columns are of 300 mm X 600mm. Assume uniform mass distribution.

OR

07

- Q.5 (a) Design an interior panel of a flat slab having equal panels of 6 m X 6 m. The internal columns are 400 mm in diameter and the column head is 800 mm in diameter. The storey height above and below slab is 4 m. Design the flat slab with drop and column head. Take live load 4 kN/m². Use M20 concrete and Fe-415 grade steel.
 - **(b)** Give various methods of improving ductility of a structure.
