Seat No.: Enrolment No GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VIII (NEW) - EXAMINATION – SUMMER 20 Subject Code: 2180105 Date: 0	017 06/05/2017
BE - SEMESTER-VIII (NEW) - EXAMINATION – SUMMER 20	6/05/2017
	6/05/2017
Subject Code: 2100105 Date: 0	
Subject Name: High Speed Aerodynamics(Department Elective III	
	Marks: 70
Instructions:	
1. Attempt all questions.	
2. Make suitable assumptions wherever necessary.	
3. Figures to the right indicate full marks.Q.1 (a) 1. The Mach angle for a flow at Mach 7.9 is	07
2. Define Aerothermodynamics	07
3. Define Shock wave	
4. When Mach no. is decreases, thickness of the shock layer is	
•	• • • • • • • • • • • • • • • • • • • •
5. Define hypersonic flow. What is it?6. Why entropy layer is formed over the body?	
7. Write an equation of Newtonian sine squared law for pressure coeffic	viont
(b) Derive L/D = Cot α for flat plate using aerodynamic forces.	07
Q.2 (a) Draw and explain in brief, variation of stagnation pressure coe	
(C _{pmax})with Mach number and gamma (γ)	THEIGHT 07
(b) Prove "Hypersonic limit for a slender wedge, the wave angle is only 20%	6 larger 07
than the wedge angle	o larger or
OR	
(b) Explain with neat sketch physical effects characteristics of hypersonic flo	ow 07
Q.3 (a) Explain with neat sketch High temperature Flows.	07
(b) Using Oblique shock wave geometry, derive Temperature ratio relat	
hypersonic case.	
OR	
Q.3 (a) Derive Hypersonic expansion wave relations using centered expansion	n wave 07
geometry.	
(b) Prove $C_p/\Theta^2 = f(K/Y)$ for hypersonic shock relations in terms	of the 07
hypersonic similarity parameter	
Q.4 (a) Explain with neat sketch 1.Entropy layer 2.Viscous Interaction	07
(b) Explain Centrifugal force corrections to Newtonian theory with neat sketch	ch. 07
OR	
Q.4 (a) Consider a supersonic stream at a Mach number M=2, undergoing a	_
expansion. The stream is turned by an angle of 3 degree due to the exp	
The following data is given, to find out Mach number downstream	of the
expansion.	
Mach Number V (Prandtl-Meyer function)
1.8 20.73	
1.9 23.59	
2.0 26.38 2.1 29.10	
2.1 29.10 2.2 31.73	
(b) Explain Tangent Wedge method.	07
Q.5 (a) Explain Shock Expansion method.	07