GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1st / 2nd • EXAMINATION – SUMMER 2013

Subject Code: Maths-IIDate: 05-06-2Subject Numerical State110000			3	
		2:30 pm – 05:30 pm Total Marks: 70	arks: 70	
Instru	1. 2.	is: Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a	 Let u =(4,1,2,3) and v = (0,3,8,-2).Evaluate following as directed. 1. Find the norm of u + v. 2. Find the Euclidean inner product of u and v. 3. Find the Euclidean distance between u and v. 4. Find 2u - 3v. 	04	
	(b)	Find the inverse of $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.	05	
	(c)	If $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$, Prove that $A^2 - 13A + 12 = 0$.	05	
Q.2	(a)	Define symmetric and skew symmetric matrix. Express $A = \begin{bmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ as the	07	
	(b) (c)		03 04	
Q.3	(a)		07	
	(b)		07	
Q.4	(a)		07	
	(b)	 T: R³ → R³, Defined by T(x, y, z) = (x², y, x + y). T: R² → R², Defined by T(x, y) = (x, -y). Let R³ have the Euclidean inner product. Use the Gram-Schidt process 	to	07
	(0)	transform the basis $S = \{ (1, 0, -1), (2, 1, 1), (0, -1, 3) into orthonormal basis.$		07
Q.5	(a)	Let V be the set of all positive real number with the operations $x + y = x y$ an $k x = x^k$, $k \in \mathbb{R}$. Show that the set V is a vector space.	d	07
	(b)	Let $v_1 = (1, 2, 1)$, $v_2 = (2, 9, 0)$ and $v_3 = (3, 3, 4)$ 1. Show that the set $S = \{v_1, v_2, v_3\}$ is a basis for R^3 . 2. Find the coordinate vector of $v = (5, -1, 9)$ with respect to S.		07
Q.6	(a)	Solve $x + y + 2z = 8$, $-x - 2y + 3z = 1$, $3x - 7y + 4z = 10$ by Gauss-Jore elimination.	dan	07
	(b)			07

1/2

- **Q.7** (a) Consider the basis $S = \{v_1, v_2\}$ for R^2 , where $v_1 = (-2, 1)$ and $v_2 = (1, 2)$ and Let $T : R^2 \rightarrow R^3$ be the linear transformation such that $T(v_1) = (-1, 2, 0)$ and T (v₂) = (0, -3,5). Find a formula for T (x₁,x₂) and use that formula to find $T(x_{1}, x_{2}).$
 - (b) Define: Real inner product space. Let the vector space P_2 have the inner product 07 space $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x) dx$ then

 - 1. Find ||p|| for p = 1, q = x. 2. Find d (p, q) if $p = x, q = x^3$.

07