GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III • EXAMINATION – SUMMER 2013

DE - SEMESTER-III · EAAMINATION - SUMMER 2013			
Subject Code: 130001Date: 0Subject Neme: Mathematics III			
Subject Name: Mathematics-III Time: 02.30 pm - 05.30 pm Total Marks:			
Instructions:			
1. Attempt all questions.			
	2.	Make suitable assumptions wherever necessary.	
3. Figures to the right indicate full marks.			
Q.1	Do a	s directed	14
	(a)	Find the Laplace transform of $t^2 \sin 2t$	
	(b)	Evaluate $\beta\left(\frac{7}{2},\frac{5}{2}\right)$	
	(c)	Solve $e^x \tan y dx + (1 - e^x) \sec^2 y dy = 0$	
	(d)	Find general solution of $y'''-y=0$	
	(e)	Define Convolution and unit step function.	
	(f)	Discuss singularities of $x^3(x-1)y''-3(x-1)y'+xy = 0$	
		Express $f(x) = 3x^2 + 3x + 1$ in terms of Legendre polynomial	
Q.2	(a)	By power series method solve $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$	07
	(b)	(i) Prove that $\frac{d}{dx} \left[x^n J_n(x) \right] = x^n J_{n-1}(x)$	04
		(ii) Define Gamma function and Evaluate $\int_{0}^{\infty} x^{6} e^{-2x}$	03
		OR	
	(b)	(i) Solve $x \frac{dy}{dx} + (1+x)y = x^3$	03
		(ii) Prove that $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$	04
Q.3	(a)		07
		(i) $t^3 + e^{-3t} + t^{\frac{1}{2}}$ (ii) $e^{-2t} \sin^2 2t$	07
	(b)	Find inverse laplace transform of $2a^2 + 2$	07
		(i) $\frac{3s^2 + 2}{(s+1)(s+2)(s+3)}$ (ii) $\frac{s^3 + 2s^2 + 2}{s^3(s^2+1)}$	
		(3+1)(3+2)(3+3) OR	
Q.3	(a)	State and prove convolution theorem	07
_	(b)	Find inverse laplace transform of	07
		(i) $\log\left(\frac{s+1}{s-1}\right)$ (ii) $\frac{e^{-4s}(s+2)}{s^2+4s+5}$	
Q.4	(a)		04
-	. /	(i) Using method of variation of parameter solve $y''-2y'+y = e^x x^{\frac{3}{2}}$	
		(ii) Solve $(D^2 + D - 6)y = e^{2x} \sin 3x$	03
	(b)	(i) Find the Fourier series of $f(x) = x + x $, where $x \in (-\pi, \pi)$	04
		(ii) find Fourier series of $f(x) = x^3$ where $x \in (-\pi, \pi)$	03
		OR	

Q.4 (a) (i) Solve $x^2y''+4xy'-4y = \sin(\ln x)$ (ii) Using method of undetermined coefficients solve $y''-2y'+y = e^x + x$ (b) Solve using Frobenius method 2x(1-x)y''+(1-x)y'+3y = 0Q.5 (a) Using method of separation of variables solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$; 07

$$u = 0, \ \frac{\partial u}{\partial x} = 1 + e^{-3y}$$
 when $x = 0$

(b) A rod 30cm long has its end A and B kept $20^{\circ}C$ and $80^{\circ}C$ respectively until 07 steady state condition prevail. The temperature at each end is suddenly reduce to $0^{\circ}C$ and kept so. Find the resulting temperature function u(x,t) from end A.

OR

- **Q.5** (a) Find the Fourier transform of e^{-ax^2} where a > 0. 07
 - **(b)** Find Fourier cosine integral of $f(x) = \begin{cases} x & if \ 0 < x < a \\ 0 & if \ x > a \end{cases}$

07