GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III • EXAMINATION – SUMMER 2013

Subject Code: 120002					
Subject Code: 130002Date: 01-06-2Subject Name: Advanced Engineering MathematicsTime: 02.30 pm - 05.30 pmTotal Marks					
Instructions:					
 Attempt all questions. Make suitable assumptions wherever necessary. 					
3. Figures to the right indicate full marks.					
Q.1	(a)	(i)	Solve $(1 + y^2)\frac{dx}{dy} = \tan^{-1} y - x$.		03
			Solve $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$.		04
	(b)		Find power series solution of the of the equation		07
			$\frac{d^2 y}{dx^2} + xy = 0 \text{in powers of } x.$		
Q.2	(a)		Solve $x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$ using method of separation of var	riables.	07
	(b)		Find the power series solution of the equation		07
			$(x^{2}+1)y'' + xy' - xy = 0$ about $x = 0$. OR		
	(b)		Solve $(D^3 - D^2 - 6D)y = x^2 + 1$		07
Q.3	(a)		Find the fourier series of the periodic function $f(x)$ with	period 2π .	07
			defined as follows:	1	
			$f(x) = \begin{cases} 0, & for -\pi < x \le 0\\ x, & for 0 \le x < \pi \end{cases}$		
	(b)				07
	(b)		Find the fourier cosine series for $f(x) = x^2$, $0 < x \le c$. f(x).	Also sketch	07
Q.3	(a)		OR Find the fourier series of periodic function with period	2. which is	07
C.	()		given below.	,	-
			$f(x) = \begin{cases} 0 & -1 \le x \le 0\\ x & 0 \le x \le 1 \end{cases}$		
	(b)		Find the fourier series of the periodic function with period	12 of	07
	(0)			201	07
			$f(x) = \begin{cases} \pi & 0 \le x \le 1\\ \pi(2-x) & 1 \le x \le 2 \end{cases}$		
Q.4	(a)	(i)	Prove that $L(e^{-at}) = \frac{1}{s+a}, s > -a$		03
		(ii)	Prove that $L(t^n) = \frac{n!}{s^{n+1}}$, <i>n</i> being positive integer.		04
	(b)	(i)	Find $L^{-1}\left\{\log\frac{s+a}{s+b}\right\}$		04
			$\begin{bmatrix} s+b \end{bmatrix}$		

(ii) Find
$$L^{-1}\left\{\frac{s+2}{\left(s^2+4s+5\right)^2}\right\}$$
 03

Q.4 (a) If
$$\overline{f(s)}$$
 is the laplace transform of $f(t)$ and $a \ge 0$, then
prove that $L[f(t-a)u(t-a)] = e^{-as} \overline{f(s)}$
(b) (i) Final the lambda for $x = x \begin{bmatrix} t \\ f(t-a) \end{bmatrix} = 0$

(i) Find the laplace transform
$$L\left[\int_{0}^{t} e^{-x} \cos x \, dx\right]$$
 03

(ii)
Find the laplace transform
$$L\left[\int_{0}^{t}\int_{0}^{t}\sin au \, du \, du\right]$$
 04

Q.5 (a) (i) Define Beta function and Rectangle function.
(ii) Form partial differential equation
$$z = (x-2)^2 + (y-3)^2$$

(b) Find the fourier transform of f defined by $f(t) = e^{-|t|}$.
Sketch the graph.
OR

OR

Q.5 (a) (i) Eliminate the function f from the relation
$$f(xy+z^2, x+y+z)=0$$
. 04
(ii) $\partial^2 z$ (iii) $\partial^2 z$ (iv) $\partial^2 z$ (iii) $\partial^2 z$ (iv) $\partial^2 z$

Solve
$$\frac{\partial z}{\partial x \partial y} = \sin x \sin y$$
, given that $\frac{\partial z}{\partial y} = -2 \sin y$, when $x = 0$, and π

$$z = 0$$
, when y is an odd multiple of $\frac{\pi}{2}$.

(b) (i) Solve
$$x(y-z)p + y(z-x)q = z(x-y)^2$$
 04

(ii) Solve
$$z = px + qy + p^2 q^2$$
 03
