ment No.
U

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION – SUMMER 2013

Sul	biect		
Tir	-	Name: Physical Chemistry 2.30 pm - 05.00 pm Total Marks: 70	
11150	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	State the phase rule and explain various terms used in phase rule with suitable examples.	07
	(b)	Discuss the salient features of phase diagram of sulphur system.	07
Q.2	(a)	Define the term molar heat capacity. Define the relation C_p - C_v = R. Calculate the value of \hat{e} E and \hat{e} H on heating 64.0 g of oxygen from 0° C to 100° C. C_v and C_p on an average are 5.0 and 7.0 cal mol ⁻¹ .	07
	(b)	Explain chemical potential and its variation with temperature and pressure. OR	07
	(b)	Derive the equation for free energy and work function and for its variations with temperature and pressure.	07
Q.3	(a)	Derive Nernst equation. What is the potential of a half-cell consisting of zinc electrode in $0.01M$ ZnSO ₄ solution at 25° C, $E^{\circ} = 0.763V$.	07
	(b)	Explain second order reaction with suitable examples. OR	07
Q.3	(a) (b)	Explain first order reaction with suitable examples Explain phase rule for two component silver and lead system	07 07
Q.4	(a)	Derive van der Waals reduced equation of state. The reduced volume and reduced pressure of a gas are 10.2 and 0.7. What will be its pressure if itos critical pressure is 4.25 atm	07
	(b)	Write a note on liquefaction of gases with one example OR	07
Q.4	(a)	Explain second law of thermodynamics. Derive an expression for entropy change for ideal gas associated with temperature and pressure changes.	07
	(b)	Write a note on acid base catalysis	07
Q.5	(a)	Define the following terms with examples: 1. Inhibitor 2. Triple point 3. Intensive and extensive properties 4. Electrochemical cell 5. Catalysis 6. Critical constants 7. Third law of thermodynamics.	07
	(b)	Write a note on enzyme catalysis OR	07
Q.5	(a) (b)	Explain surface active agents. Write a note on emulsions	07 07
