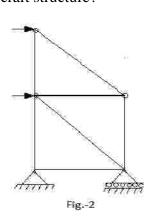
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV • EXAMINATION – SUMMER 2013

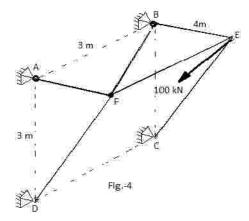
Subject Code: 140101Date: 12-06-201Subject Name: Aircraft Structure - ITotal Marks: 7			
Insti	ruction 1. 2. 3.	ns: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Define the terms: 1-) Resilience.	02
	(b)	2-) Slenderness Ratio.	02
	(b) (c)	State and explain the "Maxwell's Reciprocal Theorem". What do you mean by term Boundary Condition? State its importance in	02 02
	(0)	structural analysis.	02
	(d)	State Moment Area Theorems.	02
	(e)	Draw a probable sketch which shows a buckle shape of a long column for following support conditions; 1-) Both the ends are fixed.	04
		2-) Both the ends are Free.3-) One end fix and other end is free.	
		4-) One end fix and other is hinged.	
	(f)	Justify the statement by giving suitable example: "Indeterminate structure is more stable than that of determinate structure"	02
Q.2	(a)	What do we mean by Static Indeterminacy (SI) and Kinematic Indeterminacy (KI) of a structure? Find the SI and KI of a structure shown in fig1 (plane frame) and fig2 (plane truss).	07
	(b)	Analyze the Plane truss as shown in fig3 using Method of Tension Co- efficient.	07
		OR	07
	(b)	Analyze the space truss as shown in fig4 using Method of Tension Co- efficient. The force 100 kN applied at joint E acting towards the joint D.	07
Q.3	(a)	State the assumption made in Euler's buckling theory of long column and derive the formula for buckling load of a long column.	07
	(b)	A simply supported beam having length 10 m is subjected to a downward point load of 20 kN at a distance 6 m from left end support. Determine the rotation at left end support and deflection at the canter span of a beam using Double Integration Method. Take $E= 200 \text{ kN/mm}^2$ and $I = 10^9 \text{ mm}^4$. OR	07
Q.3	(a)	Determine the deflection at point D for an overhang beam as shown in fig5	07
2.5	(a)	using Moment area Method. Take $E= 200 \text{ kN/mm}^2$ and $I = 10^9 \text{ mm}^4$.	07
	(b)	Determine slope and deflection at the free end of a cantilever beam as shown in Fig6 using Macaulay's Method. Take $E=200 \text{ kN/mm}^2$ and $I = 10^9 \text{ mm}^4$.	07
Q.4	(a)	Explain plane stress problem by giving suitable example. Also write the stress- strain relationship for the same.	07

(b) In a plain strain problem, we have stress fxx = 1400 MPa, fyy = -100 MPa, **07** young modulus E = 200 GPa and passion ratio $\mu = 0.3$. Determine the value of stress fzz.

OR

- Q.4 (a) Explain plane strain problem by giving suitable example. Also write the stress- 07 strain relationship for the same.
 - (b) A cantilever beam of a rectangular cross section (b x having length "L" is 07 subjected to a point load "F" at free end. Considering the stress function €= Axy + Bxy³, investigate the stress field and by satisfying the boundary conditions, obtain the stress distribution in a beam.
- Q.5 (a) Derive the strain energy equation for a member subjected to a bending 07 moment.
 - (b) Calculate the total strain energy stored in a 6 m long cantilever beam subjected 07 to a u.d.l. of 10 kN/m throughout the length. The cross section of a beam is rectangle having dimension 100 mm x 300 mm. Take $E = 200 \text{ kN/mm}^2$ and $G = 80 \text{ kN/mm}^2$.


OR


- **Q.5** (a) Derive the strain energy equation for a member subjected to Torsion.
 - (b) Write the different required characteristics of the Aircraft structure. Why 07 hollow section and I-sections are preferred for aircraft structure?

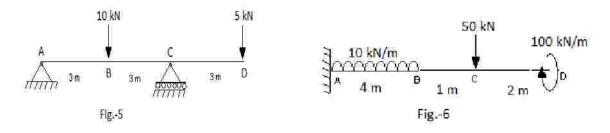


Fig.-3

6 kN

8 KN

07