GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV • EXAMINATION - SUMMER 2013

		BE - SEMIESTER-IV • EXAMINATION – SUMMER 2015	
Sub	ject (Code: 140502 Date: 12-06-20	013
Sub	ject I	Name: Chemical Engineering Thermodynamics -I	
Tim	e: 10	0:30am – 01:00pm Total Marks:	: 70
Instr	uction		
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
Q.1	(a)) State first law of thermodynamics? Derive the expressions for 1 st la thermodynamics for non-flow process.	ıw of 07
	(b)) Discuss the PVT behavior of pure substance.	07
Q.2	(a)) Define the following.	07
L	()	i. Standard heat of reaction.	
		ii. Standard heat of combustion.	
		iii. Standard heat of formation.	
	(b)) For an ideal gas undergoing adiabatic process, show that	07
		$(T_2/T_1) = (V_1/V_2)^{\gamma-1}$	
		OR	
	(b)) An ideal gas with $C_v = 1.5R$ undergoes the following mechanically reversi	ible 07
		changes in a series of non-flow processes as given below:	
		 a) From an initial state of 70°C and 1 bar, it is compressed adiabatica 150 °C. 	lly to
		b) It is then cooled from $150 ^{\circ}$ C to 70° C at a constant pressure.	
		c) Finally the gas is expanded isothermally to its original state.	_
		Calculate Q, W, ΔU and ΔH for each of the three processes and for the cy	cle.

Q.3 (a) Calculate the standard heat of reaction of the methanol synthesis at 800°C.

$$CO_{(g)} + 2H_{2(g)} --- > CH_3OH_{(g)}$$

07

The standard heat of reaction at 25°C is -90135 J

component	А	$B*10^{3}$	C*10 ⁶	D*10 ⁻⁵
CH ₃ OH	2.211	12.216	-3.450	0.0000
СО	3.376	0.557	0.0000	-0.031
H ₂	3.249	0.422	0.0000	0.083

 $Cp/R = A = BT + CT^2 + DT^{-2} J$ and T is in K

(b) State various equations of state for real gas? Describe Virial equation in brief. 07

OR

- (a) Write in brief on "Heat effects accompanying phase change" Q.3 07
 - (b) Write a short note on Thermodynamic Diagrams. 07

Q.4 (a) Distinguish between Heat engine and Heat pump

the initial temperature after each stage?

(b) A steel casting $[Cp = 0.5 \text{ kJ kg}^{-1} \text{ K}^{-1}]$ weighing 40 kg and at a temperature of **07** 450°C is quenched in 150 kg of oil $[Cp = 2.5 \text{ kJ kg}^{-1} \text{ K}^{-1}]$ at 25°C. If there are no heat losses, what is the change entropy of (i) the casting (ii) the oil and (iii) both considered together?

OR

Q.4	(a)) Explain any method of liquefaction process	
	(b)	Discuss about factors affecting the choice of refrigerant.	07
Q.5	(a)	What is the criterion of exactness? Using the criterion of exactness derive the Maxwell equation.	
	(b)	Write a brief note on Absorption refrigeration system?	07
		OR	
Q.5	(a)	Write a brief note on Vapor compression refrigeration system?	07
	(b)	Discuss the necessity of using a multistage compressor with interstage cooling & show that in the multistage compressor, the total work requirement is minimum when the work in all stages is the same provided the gas is cooled to	07

07