GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV • EXAMINATION – SUMMER 2013

Subject Code: 142101 Date: 07-06-2013 Subject Name: Transport Phenomenon in Materials Processing Time: 10:30am – 01:00pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Q.1 (a) (i) Explain viscosity? State Newton's Law of Viscosity. Distinguish between kinematic & dynamic viscosity. Derive its unit & dimension. (ii) Explain Classification of fluid.

- (b) Calculate the dynamic viscosity of an ail, which is used for lubrication between a 07 square plate of size 0.8m *0.8m and an inclined plane with angle of inclination 30degree. The weight of square plate is 300N and it sl down the inclined plane with a uniform velocity of 0.3m/s. The thickness of oil film is 1.5mm. 07
- (a) State laws of conservation of mass and derive equation of continuity. **Q.2**
 - (b) A 30cm diameter pipe conveying water branches into two pipes of diameter 20& 07 15cm, if the average velocity in the 30cm dia pipe is 2.5mt/sec, find the discharge in the pipe. Also determine the velocity in 15cm pipe f the average velocity in 20cm dia pipe is 2mt/sec.

ΛD

		UK UK	
	(b)	What is Fourier law of heat conduction? Derive one dimensional heat conduction	07
		equation through a large plane wall.	
Q.3	(a)	(i) Define convective heat transfer. Explain the difference between free & forced convection with examples.	04
		(ii) Give correlation of heat transfer coefficient with Nusselt number.	03
	(b)	Calculate thermal conductivity 'k' of the powder if the inner radius &	07
	(0)	temperature are Ri = 0.05 m & Ti = 450 °C outer radius & temperature as	07
		Ro= 0.10 m & To= $300 ^{\circ}\text{C}$. It is heated with 150 V & 0.75 amp current.	
		OR	
Q.3	(a)	Derive Euler's equation and obtain Bernoulli's equation by its integration.	07
	(b)	Water is flowing through a pipe of 5cm diameter under a pressure of 29.43N/cm2	07
	()	& with mean velocity 2 mt/sec. Find the total head/ total energy per unit wt of the water at a cross section, which is 5mt above the datum line.	
Q.4	(a)	Give equation for Newton's law of cooling? Define Reynolds & Grashof	07
	()	numbers. Where these numbers are used ?	•••
	(b)	Write in brief about Wein's distribution law and Lambert's law	07
	()	OR	0.
Q.4	(a)	What are the various applications of Bernoulli's equation?	04
	(a)	State & explain how the rate of flow is measured by venturimeter.	03
	(b)	State Newton's second law of motion and derive equation for momentum balance.	07
Q.5	(a)	Define Diffusivity. Give Fick's first law and second law.	07
	(b)	Distinguish betweenSteady diffusion & Pseudo-steady diffusion	07
	(b)	• • •	07
~ -		OR	• -
Q.5	(a)	Derive general equation of mass diffusion in stationary media.	07
	(b)	Using differential momentum balance equation, derive Navier-Stokes Equation.	07

04

03