Seat No.:	Enrolment No.
Deat 110	Emoment 10.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V • EXAMINATION – SUMMER 2013

	•	Code: 150104 Date: 20-05-2013	
Tir	•	Name: Computational Fluid Dynamics I 0:30 pm to 01:00 pm Total Marks: 70 ons:	
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Discuss the classification of quasilinear partial differential equations. Discuss the eigen value method.	07 07
Q.2	(a) (b)	Explain in brief the momentum equation. Discuss the model of an infinitesimally small fluid element moving with the flow.	07 07
	(b)	OR Discuss the impact on physical and computational fluid dynamics for hyperbolic equation.	07
Q.3	(a) (b)	Briefly discuss shock capturing methods. Define adiabatic wall temperature. Also explain physical boundary conditions for a viscous flow.	07 07
		OR	^ -
Q.3	(a) (b)	Explain mathematical formulation of finite differences. Discuss the concept of one-sided difference in detail.	07 07
Q.4	(a) (b)	Draw and explain the formulation of explicit finite difference module. Explain discretization error and round off error and discuss its significance in numerical solutions.	07 07
Q.4	(a)	OR Explain Lax Wendroff scheme and explain the concepts of consistency and	07
7. 7	(a)	stability.	
	(b)	Write the basic requirement of computational fluid dynamics.	07
Q.5	(a) (b)	Discuss the finite volume method for one dimensional steady state equation. Explain the substantial derivative and partial derivative also describe the relation between the two.	07 07
0.5	(5)	OR	07
Q.5	(a) (b)	Discuss computational fluid dynamics as a research tool. Explain the concept of grid generation in detail.	07 07
