GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V • EXAMINATION – SUMMER 2013

•	ubject Code: 150605 Date: 03-06 ubject Name: Structural Analysis - III ime: 10.30 am - 01.00 pm Total Marl structions:			
Time				
	1. A 2. N	Attempt all questions. Jake suitable assumptions wherever necessary. Yigures to the right indicate full marks.		
Q.1	(a) (b)	Explain the term shape factor and collapse load Give the uses of dome and beam curved in plan	07 07	
Q.2	(a)	Calculate the shape factor for a square section arranged as shown in Figure 1.	07	
	(b)	Obtain the formula to calculate plastic moment of resistance of a propped cantilever beam of span L carrying uniformly distributed load of W_c throughout the span.	07	
		OR		
	(b)	Calculate plastic moment of resistance required for a fixed beam of span 10 m loaded by a collapse uniformly distributed load of 18 kN/m over left half 5 m and a collapse point load of 45 kN at 7.5 m from the left support.	07	
Q.3	(a)	Formulate the stiffness matrix, S , and load vector, A_D - A_{DL} , for the beam	07	
	(b)	shown in the Figure 2. Take EI constant. For the above problem Q.3 (a), calculate the joint displacements using stiffness method and draw the shear force and bending moment diagrams. OR	07	
Q.3	(a)		07	
	(b)		07	
Q.4	(a)	A curved beam circular in plan symmetrically supported on six columns has a radius of 6 m, carries uniformly distributed load of 40 kN/m, including self weight. Calculate shear force, bending moment and twisting moment at 10^{0} interval.	07	
	(b)	Derive the expression for M ϕ and T ϕ for a curved beam fixed at ends. OR	07	
Q.4	(a)	A spherical dome having 8 m span and 1.5 m rise is subjected to a load of 4 kN/m^2 , including self weight and a lantern load of 1 kN at the crown. Thickness of the dome is 150 mm. Calculate stresses in the dome.	07	
Q.4	(b)	A conical dome having 8 m span and 4.0 m rise is subjected to a load of 5 kN/m^2 , including self weight and a concentrated load at vertex of 10 kN. Calculate stresses in the dome. The thickness of the dome is 100 mm.	07	
Q.5	(a)	Differentiate between straight beam and curved beam.	07	
	(b)	Derive an expression for stresses in conical dome subjected to concentrated load at crown.	07	
Q.5	(a)	OR Give the properties of flexibility and stiffness matrix.	07	
V	(a)	Give the properties of neuronity and summess matrix.	07	

(b) State and explain 'static theorem' and 'kinematic theorem' of plastic 07 theory.

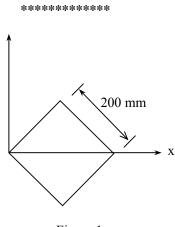


Figure 1

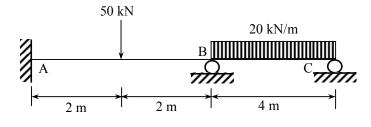


Figure 2