GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – SUMMER 2013

Subject Code: 160105 Date: 30-05-20 Subject Name: Computational Fluid Dynamics II			
Time: 10.30 am - 01.00 pmTotal Marks: 70Instructions:			
Inst	ruction 1. 2. 3.	is: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Explain High Resolution Scheme in general. Discuss in detail flux difference splitting.	07 07
Q.2	(a) (b)	Explain Beam Warming Approach. Discuss upwind scheme in detail. Briefly state numerical forms of Euler equation.	07 07
		OR .	07
	(b)	Utilizing the generic form for the subsonic supersonic flow through nozzle u_{1} u_{2}	07
		derive the flux terms and source terms as a function of u_1, u_2, u_3 .	
Q.3	(a) (b)	Explain the concept of additional considerations for implicit method. Discuss multidimensional problem and approximate factorization. OR	07 07
Q.3	(a)	Discuss in detail the advantages of upwind scheme comparing with previous	07
	(b)	schemes developed. Describe in detail second order upwind scheme and state total variation diminishing concept.	07
Q.4	(a) (b)	Obtain the roots of I-D unsteady flow using the method of Jacobians. Derive the non dimensional form of conservative form of Governing equations for subsonic-supersonic flow through C-D nozzle. OR	07 07
Q.4	(a)	Using a neat sketch explain how to set up a problem for flow through nozzle	07
	(b)	with shock into the divergent section. Draw the flow chart for TAUXY function subprograme for viscid flow over the flat plate.	07
Q.5	(a)	Write a short note on shock tube and apply the Godunov approach for the same.	07
	(b)	Derive the transformed form of governing equations for Prandtl Mayer expansion waves.	07
Q.5	(a)	OR Draw and explain the flow chart for main program for supersonic, inviscid flow	07
X •0	(4)	over a flat plate.	07
	(b)	Derive the expression for Prandtl-Mayer functions for a supersonic flow expanded from a corner.	07
