GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – SUMMER 2013

Subject Code: 160505 Subject Name: Computer Aided Process Synthesis

Time: 10.30 am - 01.00 pm

Total Marks: 70

Date: 30-05-2013

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 1

Prepare the table for HCC and GCC. Explain the significance of GCC Curve with reference 14			
to utilities requirement. Show the heat exchanger area calculation for steam(ST) and			
C1region.Assume $\hat{e} T_m = 20$ ⁰ K			

Stream	FCp (KW/K)	Tin, K	Tout, K	Q available	h
				KW	W/m^2K
H1	10000	600	450	15,00,000	800
H2	10000	500	400	10,00,000	700
ST		650	650		5000
C1	15000	450	590	-21,00,000	600
CW		300	325		600

2 (a)	-		S in chemical eng	gineering. determine the best alter	native solution	4
(b)	Assume value		y out TIENS and	determine the best and	native solution.	10
	Stream	Tin(deg.F)	Tout(deg.F)	FCp(BTU/Deg. F)	cost	
	C1	100	580	1		
	C2	100	580	2		
	H1	600	200	3		
	Steam	650	650		high	
	Hot water	250	>130		low	
	Cooling W	80	<125		medium	

OR

(b)	Prepare Transhipment model for the above data and prepare LP formulation.	10
3 (a)	Write a short note on Geometric concepts for Reactor attainable region.	7
b)	Write a short note on Environmental factors in process design.	7

OR

(a)	Discuss in brief for design opportunities and general steps in product and process design.	7

- (b) Write a short note on Threshold approach temp. and optimum approach temp. for HENS. 7
- 4 (a) Given the processing times for these products A, B, C, below. Determine with a Gantt Chart 7 the make span and cycle time for manufacturing two batches of A, 1 of B and 1 of C for the following cases:
 - a. Zero-Wait policy with sequence AABC.
 - b. Same as (a) but with no intermediate storage policy (NIC)
 - c. Same as (a) but with unlimited intermediate storage policy (UIS)

Processing Times (hr)				
	Stage 1	Stage 2	Stage 3	
А	5	4	3	
В	3	1	3	
С	4	3	2	
Zero Clea	anup Times			

0

(b)	Write a short note on side stripper and side enrichers.
	OR
(a)	Explain in detail various transfer policies for batch process scheduling.

7

7

7

7

- (b) Discuss T-Q diagram of inter cooling and inter heating.
- 5 (a) Discover the best sequence among those possible for the following problem based on 7 minimizing the total of the estimated vapour flows in the columns.

Species	Relative Volatility	Feed Flow, mol/s
А	2	10
В	1.5	20
С	1.2	10
d	1	60

Is the answer consistent with any of the heuristics? Explain.

- (b) Discuss vapour recompression and heat pump w.r.t heat integrated distillation column. 7 OR
 - (a) Write a short note on heuristics for designing separation processes.
- (b) Find the best distillation based separation sequence if the following data hold for marginal 7 vapour flows. The components behave relatively ideally.

	А	В	С	D	Е
A/B	-	-	100	1	1
B/C	1	-	-	1	1
C/D	1	100	-	-	1
D/E	1	1	100	-	-
