Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION - SUMMER 2013

Subject Code: 160804Date: 03-06-2013Subject Name: Electrical Machine DesignTotal Marks: 70Time: 10.30 am - 01.00 pmTotal Marks: 70Instructions:Total Marks: 70)13	
mstr	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Define heating time constant and explain how it can be evaluated from	07	
	(b)	heating curve. A 15KW, 230V, 4-pole d.c. machine has the following data: Armature diameter 0.25m, armature core length 0.125m, air gap length at pole centre 2.5mm, flux per pole 11.7mWb, ratio of pole arc to pole pitch 0.66. Calculate the mmf required for air gap (i) if the armature surface is treated to be smooth (ii) if the armature is slotted and the gap contraction factor is 1.18.	07	
Q.2	(a)		07	
	(b)	Explain radial and axial ventilation with the help of sketches. Explain with necessary diagrams different cooling methods used for transformer.	07	
		OR		
	(b)	Explain :a. Significance of cruciform core in transformer.b. Design difference between power & distribution transformer.	07	
Q.3	(a)	Derive output equation of 3 \circ Transformer. Write significance of constant $-K\phi$	07	
	(b)		07	
Q.3	(a)	What are the important considerations in choosing number of poles in	07	
	(b)	D.C. machine? Determine the dimensions of core and yoke for a 200KVA, 50Hz single phase transformer. A cruciform core is used with distance between adjacent limbs equal to 1.6 times the width of core laminations. Assume voltage per turn 14V, maximum flux density 1.1 Wb/m ² , window space factor 0.32, current density $3A/mm^2$. The pet iron area is 0.56d2 in a cruciform core and the width	07	

- Q.4 (a) Explain the design procedure in the design of field windings for a D.C. shunt 07 machine.
 - (b) What are the factors that affect the size of rotating machines?

04

- - density 3A/mm². The net iron area is 0.56d2 in a cruciform core and the width of the largest stamping is 0.85d, where d is the diameter of the circumscribing circle.

Mention various factors on which brush friction loss depends.

OR

- Q.4 (a) Define specific magnetic loading (Bav) and specific electric loading (ac) and 07 obtain an expression for the õoutput co-efficient for a D.C. machine.
 - (b) Explain various factors affecting selection of Numbers of armature slots for 07 D.C. machine.
- Q.5 (a) Discuss the factors that determine the choice of air-gap in induction motor. 07
 - (b) A single phase, 400V, 50 Hz transformer is built from stampings having a 07 relative permeability of 1000. The length of the flux path is 2.5m, the area of cross section of the core is 2.5x10⁻³ m² and the primary winding has 800 turns. The iron loss at the working flux density is 2.6 W/Kg and iron weighs 5.8 x 10⁻³ Kg/m3. Stacking factor is 0.9. Estimate the maximum flux and no load current of the transformer.

OR

- Q.5 (a) Explain how eddy current loss occurs and derive an expression for eddy 07 current loss in a magnetic material.
 - (b) What are the factors that limit the design of an electrical machine? 07

03