GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – SUMMER 2013

Subject Code: 160906

Date: 04-06-2013

Subject Code: 100900 Subject Name: Theory of Electromagnetics Time: 10.30 am - 01.00 pm Instructions:

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain cylindrical coordinate system, differential elements and 07 transformation method from cylindrical to cartesian coordinate system.
 - (b) Transform the vector $4a_x 2a_y 4a_z$ into spherical coordinates at a point P 07 (x=-2, y=-3, z=4).
- Q.2 (a) Derive the expression for total electric field intensity due to infinite surface 07 charge distribution in free space.
 - (b) Let $D = 2y^2z^2 a_x + 3xy^2z^2 a_y + 2xyz a_z pC/m^2$ in free space. Find (a) the total **07** electrical flux passing through the surface x=2, 0ÖyÖZ, and 0ÖzÖZ in a direction away from the origin, (b) the total charge contained in an incremental sphere of a radius 1 µm centered at P(2,2,2).

OR

(b) Define divergence and its physical significance.

07

- Q.3 (a) Explain potential and potential gradient. Derive relationship between 07 potential and electric field intensity.
 - (b) A non uniform field $E = y a_x + x a_y + 2a_z$. Determine the work expended in 07 carrying 2C from B(1,0,1) to A(0.8,0.6,1) along the shorter arc of the circle

 $x^2+y^2=1$, z=1.

Find the work required to carry same charge from B to A through straight line joining B to A in the same field.

OR

		UK UK	
Q.3	(a)	Explain the Gaussøs law applied to infinite line charge and derive the	07
		expression for D due to infinite line charge.	
	(b)	Derive Poissons and Laplaces equations from fundamental.	07
Q.4	(a)	Write a short note on Displacement Current.	07
	(b)	Write and explain differential and integral forms of Maxwellos equations.	07
	()	OR	
Q.4	(a)	Derive the relation between I and J and explain the continuity equation of steady electric current in integral form and point form.	07
Q.4	(b)	Explain and derive the boundary conditions for a dielectric- dielectric interface.	07
Q.5	(a)	State and explain Amperess circuital law.	07
-	(b)	What is inductance? Explain self inductance and mutual inductance.	07
	()	OR	
Q.5	(a)	State and prove uniqueness theorem.	07
	(b)	Explain force on a differential current element.	07
	(~)		