GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII • EXAMINATION – SUMMER 2013

BE - SEMESTER-VII • EXAMINATION – SUMMER 2013		
Subject Code: 170502 Date: 24-05-201		
Subject Name: Process Equipment Design – II		
Time: 02.30 pm - 05.30 pm Total Marks: 70		
Instructions: 1. Attempt all questions.		
		Make suitable assumptions wherever necessary.
		Figures to the right indicate full marks.
	0	i gui es to the right malcate fun marks.
Q.1	(a)	Design a shell for fixed conical roof cylindrical storage tank for following 07 data:
		Tank diameter = 30 m Tank height = 18 m
		Specific gravity = 1.24 Slope of conical roof = $1/6$
		Super imposed live load = 1250 N/m^2
		MOC – Carbon steel
		Maximum allowable stress $f = 157.5 \text{ N/mm}^2$
		Density = 7.8 gm/cc Modulus of Elasticity $E = 2 \times 10^5$
		N/mm ²
		Corrosion Allowance = 2 mm
		Standard plate size available is 6300 x 1800 mm
	(b)	Type of butt joint = double welded butt joint with 85% efficiency.Describe general design steps for shell and tube heat exchanger.07
	(b)	Describe general design steps for shen and tube near exchanger.
Q.2	(a)	Design the shell of pressure vessel subjected to internal operating pressure of 07
×	(u)	7.7 atmg
		Inside dia. 3 m;
		Operating Temperature 400° C;
		MOC - CS grade 70 [UTS: 418 N/mm ² , FOS = 3];
		$E - 185*10^3 \text{ N/mm}^2$; $\mu = 0.32$; corrosion Allowance = 2 mm
		Weight of vessel = 5520 kg ;
		Maximum wind load applicable to vessel = 9000 N.m;
		Torque due to offset of piping = 625 N.m;
	(b)	Design a bracket support for reaction vessel based on following data. 07 Brackets are welded with outside surface of the reactor shell.
		OD of reactor shell = 1.3 m Thickness of the shell = 12 mm
		Height of the vessel = $2.5m$
		Clearance from vessel bottom to foundation = 1 m
		Weight of vessel with contents = 3750 kg Wind pressure = 130 kgf/m^2
		No of brackets = 4 $Diameter of bolt circle = 1.51 m$
		Size of base plate for bracket = $150 \text{ mm} \times 150 \text{ mm}$
		Size of gusset plate for bracket = $150 \text{ mm} \times 150 \text{ mm}$
		Height of the C channel from foundation = 2.625 m
		Size of C channel = $150 \text{ mm x } 75 \text{ mm}$
		Area of cross section = 22 cm^2 Modulus of section = 24.6 cm^3
		Radius of gyration = 2.43 cm
		MOC for support = IS 800
		Max. allowable tensile stress = 1400 kgf/cm^2
		Max. allowable compressive stress = 1233 kgf/cm^2
		Max. allowable bending stress = 1575 kgf/cm^2
	(b)	OR Find the thickness of a straight cylindrical skirt support for distillation 07
	(0)	The are meaneds of a starger cymercal skirt support for distinution 07

(b) Find the thickness of a straight cylindrical skirt support for distillation 07 column based on following data. Diameter of column = 2500 mm

Height of distillation column = 40 mMax. wt of vessel, its attachment & contents = 300000 kg Diameter of skirt =2500 mm Height of skirt = 5 mWind pressure at the top of column =128.5 kgf/m² Material used for skirt support = IS 800 structural steel Max. allowable tensile stress = 1400 kgf/cm^2 Max. allowable compressive stress = 666 kgf/cm^2 Max. allowable bending stress = 1575 kgf/cm^2 Seismic coefficient =0.08 Minimum wt of empty vessel = 250000 kg Q.3 (a) Compare head thickness for torrispherical, elliptical and hemispherical heads 07 using following data: Operating pressure = 15 Atm; Crown radius = 1000 mm; Knuckle radius = 100 mm; $MOC - CS (f = 142 \text{ N/mm}^2, CA = 2 \text{ mm});$ J = 0.85: Shell ID = 1000 mm; Inside depth of the elliptical dish = 200 mm(b) Discuss the steps for the design of reinforcement pad for a nozzle. 07 OR For a ring flange, design a flat ring type gasket and check the bolt size is 14 Q.3 appropriate or not. Internal design pressure = 12 kgf/cm^2 Design temperature = $150 \,^{\circ}C$ Flange material = SA 240 Gr S type 304 Max. allowable stress at design temp = 1020.7 kgf/cm^2 Max. allowable stress at atmospheric condition = 1275.9 kgf/cm^2 Bolt material = SA 193 Gr B8 type 304 Max allowable stress at 150 $^{\circ}$ C = 816.5 kgf/cm² Max. allowable stress at atmospheric condition = 1020.7 kgf/cm^2 Root area of the bolt = 0.302 in^2 Bolt size 3/4 inch Edge clearance = 35 mmBolt spacing = 61 mmGasket material = asbestos composition Gasket thickness = 1.5875 cm Gasket factor = 2.75Maximum gasket seating stress = 251.77 kgf/cm^2 Shell OD = 900 mmShell thickness = 10 mmA fixed conical roof storage tank is fabricated from structural carbon steel 07 **Q.4** (a) plate. Based o the following data find the thickness of conical roof plate and size of roof curb angle. Storage tank is classified as Class A tank. Tank diameter = 7 mTank height = 5 mSlope of conical roof = 1 in 6 Superimposed live load on roof = 125 kgf/m^2 Modulus of elasticity = $2 \times 10^{6} \text{ kgf/cm}^{2}$ Density of plate material = 7800 kg/m^3 Poisson's ration = 0.3Thickness of top most course =10 mmCalculate the weight of tubes and tube sheet for AEM type shell and tube 07 **(b)** heat exchanger using following data: Inside diameter of shell = 580 mmThickness of the shell =5 mmTube diameter = 19.05 mm Number of tubes required = 446 Minimum thickness required according to TEMA standards = 1.5 mm Length of the shell = length of tube =2.4384 m Operating pressure on tube side = 600 kPaOperating pressure on shell side = 1 atmMOC of tubes = SS 304Maximum allowable stress at op. temperature (150 °C)= 104 N/mm^2

MOC of tube sheet =SA 240 Gr S plates Maximum allowable stress at operating temperature = 110N/mm² Depth of pass partition groove = 5 mmGasket mean diameter for fixing of the tube sheet = 673 mmDensity of MOC = 8000 Kg/m^3 Tube sheets are integral part of the shell of HE. OR **Q.4** Discuss the design of trays and tray supports for a tray tower. 07 (a) **(b)** Describe the steps for structurally supported roof design. 07 A flat blade turbine agitator with six blades is installed centrally in vertical Q.5 14 tank. The tank is 1.5 m in diameter; turbine is 0.5 m in diameter. Based on the given following data, Calculate (1) Power required for agitator, (2) shaft diameter. Height of liquid in tank = 1.5 mViscosity of liquid = 20 cpDensity of liquid = 1200 kg/m^3 Speed of agitator = 120 rpmLength of agitator shaft between bearing and agitator = 2 mWidth of blade $R_{\rm b} = 120 \text{ mm}$ No. of baffles at tank wall = 4Shaft & agitator blade material = IS 2062 Gr ST 42 W Ultimate tensile stress = 4200 kgf/cm^2 Max. allowable shear stress in shaft = 550 kgf/cm^2 Modulus of elasticity = $19.5 \ 10^5 \ \text{kg/cm}^2$ For $N_{Re} >= 10000$, $N_p = 6$ and $N_{Re} < 10000$, $N_p = 5$ OR Write a short note on "Pressure Relieving Devices". **Q.5** 07 (a) **(b)** Determine the shell thickness for the entire tower height based on the 07 following data: Shell diameter = 3500 mmWorking pressure = 2 N/mm^2 Design temperature = $200 \,^{\circ}C$ Base chamber height = 3200 mmTop chamber height = 2000 mmFeed chamber height = 800 mmSp. Gr. Of the material = 7.7Permissible tensile stress = 95 N/mm^2 Insulation density = 7700 N/m^3 Corrosion allowance= 3 mm Density of MOC = $1.93 \times 10^3 \text{ kg/m}^3$ Poisson's ratio = 0.3Insulation thickness = 148 mmWeight of head = 2800 N Weight of attachments (pipes, ladders, platforms) = 1600 N/m Weight of column = 3×10^6 N Weight of tray and liquid = 900 N/m^2 Wind pressure = 1600 N/mm^2 Neglect the seismic load and eccentricity Number of trays = 60Tray spacing = 0.7 mJoint efficiency is 85 %.
