Seat No.:	Enrolment No.
Deat 110	Emoment 10.

Subject Code:182402

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII • EXAMINATION – SUMMER 2013

Date: 13/05/2013

Tim	e: 10	Name: Digital Signal Processing :30 am TO 01:00 pm Total Marks: 70	0
Instr	2. 3.	s: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Notations/ symbols used have usual meanings.	
Q.1	(a)	For the system described by $y(n) = x(n) $, determine whether the system is (i) Stable (ii) causal (iii) linear (iv) time \acute{o} invariant and (v) memory less or not.	05
	(b)	Differentiate: Analog and digital signal processing	03
	(c)	Let $x(n) = (n) + 2 (n-1)$ - $(n-3)$ and $h(n) = 2 (n+1) + 2 (n-1)$ Compute and plot the following convolution. (i) $y_1(n) = x(n)$ * $h(n)$ and (ii) $y_2(n) = x(n+2)$ * $h(n)$	06
Q.2	(a)	Consider the linear constant coefficient difference equation $y(n)$ ó (3/4) $y(n-1) + (1/8)$ $y(n-2) = 2x(n-1)$. Determine $y(n)$ for $n \times 0$ when $x(n) = (n)$ and $y(n) = 0$ for $n < 0$. Plot resultant $y(n)$.	07
	(b)	Describe implementation of discrete time system.	07
	(b)	OR Define sampling. State and explain sampling theorem.	07
Q.3	(a)	y(n-1) + b x(n) for $0 < a < 1$ and $0 < b < 1$. Determine the magnitude and phase	08
	(b)	of the frequency response of the system. Discuss effect of pipelining in DSP.	06
Q.3	(a) (b)		08 06
Q.4	(a) (b)	Define IDFT. Find 4- point DFT of the sequence $x (n) = \{1,1,0,0\}$. Discuss various properties of Z-transform. OR	07 07
Q.4	(a) (b)	Define DFT. Find the IDFT of Y(k) = $\{1,0,1,0\}$. Find Inverse Z-Transform of following: (i) $x(z) = 1 / (1-a z^{-1}) z > a $. (ii) $x(z) = \log(1+a z^{-1}) z > a $.	07 07
Q.5	(a) (b)		08 06
Q.5	(a)	Obtain the parallel-form structure of the given H(z) for (i) first -order and (ii) second order systems.	08
		$H(z) = \frac{(1+2z^{-1}+z^{-2})}{(1-0.75z^{-1}+0.125z^{-2})}$	
	(b)	(i) Compare FIR filter with IIR filter in tabular form.(ii) Compare Laplace and Z -transforms in tabular form.	06