GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1st / 2nd • EXAMINATION - SUMMER • 2014

		le: 110005 ne: Elemen	ts of Electric	al Engi	neering	Date: 20-06-2014		
•	: 02:30) pm - 05:0(Total Marks: 70		
	2. Ma		questions. umptions wherev t indicate full ma		sary.			
Q.1 (A) MCQs					07		
		ctric tester tests	metal bodies or c	onductors	for presence			
	(a) l	Potential	(b) current	(c) j	power	(d) charge		
			ent lamp is affecte	-	a \ 1 • 1 = 1.			
		Low voltage			(b) high voltag	-		
			vitching on and of		l of the above			
	-	l pressure merc Residences	ury vapour lamps (b) street lightin	-	•	d (b) (d) none of above		
			conductor is gen	-				
		opper	(b) aluminum		c) brass	(d) bronge		
			ng electrode is ab		c) 01435	(d) bronge		
		5 meter	(b) 1.0 meter		c) 2.5 meter	(d) 5 meter		
			ning electric appli		•) =::= :::=•••			
	(a) safety against shock				(b) to ensure proper working			
		• •	bliance gets full vo	oltage (d) all the above			
		se is inserted in	-	C .				
(a) Phase wire					(b) neutral wire			
	(c) bo	oth phase and n	eutral wire		(d) ear	th continuity conductor		
(B)						07		
	_	e resistance of sistance will be	15 ohms each are	connected	l in delta. The	value of equivalent star		
	(a) 1	5 ohms	(b) 5 ohms	(c) 5/3 ohms	(4) 45 ohms		
	(2).the 1	rotation betwee	n b & h is					
	(a) l	B=μH	(b) H=µB	(c) $B = \mu^2 H$	(d) $H=\mu^2 B$		
	(3).the o	(3).the direction of force for current carrying conductor lying in magnatic field is given by						
	(a).flemings right hand rule				(b).flemings left hand rule			
	(c).cork screw rule			((d).none of above			
		ries RLC circui ce frequency w		frequency	y of 1000 hz if	inductance is made four times, the		
	(a)1000		(b).500 hz	(c).707 hz	(d)4000 hz		

(5).two impedances 5+j5 and 5-j5 ohms are connected in parallel the combined impedance is							
(a) $10+j0$ (b) $2.5-j2.5$ (c) $5+j0$ (d) 10							
(6).the period of sine wave is $1/50$ seconds its frequency is							
(a) $25hz$ (b) $50 hz$ (c) $100 hz$ (d) $16 \frac{1}{3} hz$							
(7). if absolute potential of A point a is 10 volt and that of point B is -5 volt, V_{BA} will be							
(a) $+15$ volt (b) -15 volt (c) 5 volt (d) -5 volt							
Q.2 (A). Assuring the resistivity of copper to be 1.7×10^{-6} ohm.cm . Find the resistance of copper wire of							
cross section 1 mm^2 and length 10 meters. Also state the value of the resistance of copper wire if							
the cross sectional area s made four times keeping the same volume $(1 \times 1000 \text{ mm}^3)$							
the cross sectional area's made four times keeping the same volume (1x1000 mm)	07						
(B). In a Wheatstone Bridge circuit ,each branch is of 18 ohms and Galvano Meter resistance is also							
ohms. Find out current delivered by 18 Volt source of the same bridge.	0 10						
	07						
Q3. (A). Explain Quolomb's law. And explain electric potential, equipotential surfaces and electrical field	ld.						
	07						
(B). A magnetic core has length of 0.2m., and has 100 turns of coil wound around it. A current of 1	.2						
Amp.in the coil product a flux density of 0.18 webers/m ² in the core. What is the relative							
permeability of the core materials?	07						
	01						
Q.4 (A). Explain							
(i) Hystoresis loss (ii) Eddy Current Loss							
	07						
(B) Two coils A and B are mutually coupled so that 55% of the flux of Coil A links Coil B. It is four							
(B). Two coils A and B are mutually coupled so that 55% of the flux of Coil A links Coil B. It is four current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flux	ind that						
current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flu	nd that x of 0.05						
current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively Find L_A and L_B a	nd that x of 0.05						
current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flu	nd that x of 0.05 tively(b)						
current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling.	nd that x of 0.05						
current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively Find L_A and L_B a	nd that x of 0.05 tively(b) 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparison of electric circuit and magnetic circuit. 	nd that x of 0.05 tively(b) 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparison of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and averaged 	nd that x of 0.05 tively(b) 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparison of electric circuit and magnetic circuit. 	nd that x of 0.05 tively(b) 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparison of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and averaged 	nd that x of 0.05 tively(b) 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparison of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and averaged 	nd that x of 0.05 tively(b) 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparision of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and average values of the current and also find power dissipated in resistor. 	nd that x of 0.05 tively(b) 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparison of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and average values of the current and also find power dissipated in resistor. Q.6 (A) State relation between line value and phase value of voltage and current for 	nd that x of 0.05 tively(b) 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flum mWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparision of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and average values of the current and also find power dissipated in resistor. Q.6 (A) State relation between line value and phase value of voltage and current for (i) balanced star connected load. 	nd that x of 0.05 tively(b) 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparision of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and average values of the current and also find power dissipated in resistor. Q.6 (A) State relation between line value and phase value of voltage and current for (i) balanced star connected load. (ii) balanced delta connected load. 	und that x of 0.05 tively(b) 07 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flum mWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparision of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and average values of the current and also find power dissipated in resistor. Q.6 (A) State relation between line value and phase value of voltage and current for (i) balanced star connected load. 	und that x of 0.05 tively(b) 07 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively Mutual inductance (C) coefficient of coupling. Q.5 (A) Give comparision of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and averaged values of the current and also find power dissipated in resistor. Q.6 (A) State relation between line value and phase value of voltage and current for (i) balanced delta connected load. (B) What is the purpose of structure earthing? Discuss pipe and plate type earthings. 	und that x of 0.05 tively(b) 07 07 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively inductance (C) coefficient of coupling. Q.5 (A) Give comparision of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and average values of the current and also find power dissipated in resistor. Q.6 (A) State relation between line value and phase value of voltage and current for (i) balanced star connected load. (ii) balanced delta connected load. 	und that x of 0.05 tively(b) 07 07 07 07 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flu mWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respect Mutual inductance (C) coefficient of coupling. Q.5 (A) Give comparision of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and average values of the current and also find power dissipated in resistor. Q.6 (A) State relation between line value and phase value of voltage and current for (i) balanced star connected load. (B) What is the purpose of structure earthing? Discuss pipe and plate type earthings. Q.7 (A) With neat circuit diagram explain working of fluorescent lamp. 	und that x of 0.05 tively(b) 07 07 07 07						
 current of 2A produces a flux of 0.04 mWb in coil A while the same current in B creates in it flumWb. If Number of turns are 1000 and 13000 respectively Find L_A and L_B of coil A & B respectively Mutual inductance (C) coefficient of coupling. Q.5 (A) Give comparision of electric circuit and magnetic circuit. (B) A 10 ohm resistor is connected to 200 Volt sinusoidal 50 Hz supply. Find the peak, rms and averaged values of the current and also find power dissipated in resistor. Q.6 (A) State relation between line value and phase value of voltage and current for (i) balanced delta connected load. (B) What is the purpose of structure earthing? Discuss pipe and plate type earthings. 	und that x of 0.05 tively(b) 07 07 07 07 07 07						