Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1st / 2nd • EXAMINATION - SUMMER • 2014

$\mathbf{BE} \cdot \mathbf{SEWEBTER} = 1 / 2 \cdot \mathbf{EAWIINATION} = \mathbf{SUWIWER} \cdot 2014$								
Subject Code: 110015Date: 16-06-2014Subject Name: Vector Calculus and Linear AlgebraTime: 02:30 pm - 05:30 pmInstructions:Total Marks: 70								
 Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 								
Q.1		1	If a force $\overline{F} = 2x^2 yi + 3xyj$ displace a particle in the xy-plane from (0,0)	14				
		2	to (1,4) along a curve $y = 4x^2$. Find work done. For what values of constant k does the system $x - y = 3, 2 - 2y = k$					
		3	Have no solution ? Exactly one solution ? Infinitely many solution ? Solve following equations by Cramer's rule.					
		5	$x_1 + x_2 + x_3 = 9$					
			$2x_1 + 5x_2 + 7x_3 = 52$ $2x_1 + x_2 - x_3 = 0$					
		4	$T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (2x + y, x - 2y).$ Is T one - one? If so find T^{-1}					
		5	Find the co-ordinates of a polynomial $p = 5 + 11x + 2x^2$					
		6	relative to the basis S={ $1 - x, 1 + x, 1 - x^2$ } of $P_2(R)$. [0 1 0]					
			Determine the algebraic multiplicity of $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$.					
		7	Let W= span{ (0,1,0) , (-4/5,0,3/5) } Express W= (1,1,1) in the form $W=w_{1+}w_2$ where $w_1 \in w$, $w_2 \in w^{\perp}$					
Q.2	(a)	(1)	Verify whether the following matrices are Hermitian or skew Hermitian or neither. Give reason.	02				
			(i) $\begin{bmatrix} a & c+id \\ c-id & b \end{bmatrix}$ (ii) $\begin{bmatrix} 2i & 1+i & -3+2i \\ -1+i & 0 & 2-i \\ 3+2i & -2-i & -3i \end{bmatrix}$.					
		(2)	Solve the following set of equations by Gauss Jordan method.	05				
		(2)	x + y + 2z = 8	00				
	(b)		-x - 2y + 3z = 1 $3x - 7y + 4z = 10$					
		(1)	Find the inverse of matrix $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ using row operations.	04				
		(2)	Deduce the following metric to reduced row exhelen form	03				
			$\begin{pmatrix} 1 & 2 & 3 & -1 \\ 2 & 1 & 2 & 1 \end{pmatrix}$					
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
			$\begin{pmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$					
Q.3	(a)	(1)	Show that $\langle \overline{u}, \overline{v} \rangle = 9u_1v_1 + 4u_2v_2$ is an inner product on R ² generated	02				
		(2)	by $A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. Using Gramm-schmidt process construct an orthonormal basis for R^3					
			Whose basis is the set { $(2,1,3),(1,2,3),(1,1,1)$ }	05				
	(b)	(1)	Find an angle between t and sint for V is an inner product space of all continuous functions on $[0,\pi]$ with the inner product defined by	04				

 $\langle \overline{f}, \overline{g} \rangle = \int_0^{\pi} \overline{f}(t) \ \overline{g}(t) \ dt .$ (2) Show that $\langle \overline{x}, \overline{y} \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 2 x_2 y_2$ on \mathbb{R}^2 is an inner **03** product.

			product.	
Q.4	(a)	(1)	(i)) Check whether V = R ² is a vector space defined by the operations $(u_1, u_2) \oplus (v_1, v_2) = (u_1 + 2v_1, u_2 + 2v_2)$	04
			$\propto \odot(u_1, u_2) = (\alpha u_1 - 1, \alpha u_2 + 2)$	
			(ii)S = { $(x_1, x_2, x_3)/x_1 + 2x_2 = 1$ Check whether S is a subspace of R ³ .	
		(2)	Express $p(x) = 6 + 11x + 6x^2$ as a linear combination of the following.	03
			$p_1 = 2 + x + 4x^2$, $p_2 = 1 - x + 3x^2$, $p_3 = 3 + 2x + 5x^2$.	0.4
	(b)	(1)	Verify dimension theorem of the matrix $(1, 4, 5, 2)$	04
			$A = \begin{pmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{pmatrix}$	
			$n = \begin{pmatrix} 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{pmatrix}$	
		(2)	Show that the following set of vectors is a basis for M_{22} . 03	03
			$S = \left\{ \begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} \right\}$	
Q.5	(a)		Find eigen values and eigen vectors of the matrix	04
Q.0	(u)			04
			$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$	
			L0 0 5J	
	(b)		Varify Color, Hamilton theorem for the metric	05
	(b)		Verify Caley-Hamilton theorem for the matrix $\begin{bmatrix} 2 & -1 & 1 \end{bmatrix}$	05
			$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \text{ and hence find A}^{-1}$	
			$\begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$	
	(c)		Find the canonical form of the quadratic form	05
			$Q = 2x_1^2 + 3x_2^2 + 2x_3^2 + 2x_1x_3$ using orthogonal transformation.	
06	(a)		Find index ,rank ,signature of the quadratic form	04
Q.6	(a)		Find a matrix for the linear transformation L: $p_3 \rightarrow M_{22}$ defined by	04
			$L(ax^{3} + bx^{2} + cx + d) = \begin{bmatrix} -3a - 2c & -b + 4d \\ 4b - c + 3d & -6a - b + 2d \end{bmatrix} $ with	
			respect to the standard basis $B(x^3, x^2, x, 1)$ and	
			$C = \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}$	
	(b)		Find a formula for $T(x_1, x_2)$ and use it to find $T(5, -3)$ for the basis	05
	(3)		$S=\{v_1, v_2\}$ for R^2 where $v_1 = (1,1), v_2 = (1,0)$. Let $T: R^2 \rightarrow R^2$ be a linear	02
			transformation such that $T(v_1) = (1, , -2)$, $T(v_2) = (-4, 1)$.	
	(c)		If T: $R^3 \rightarrow R^3$ is a linear transformation given by	05
			T(x,y,z) = (x+y-z,x-2y+z, -2x-2y+2z). Find the basis of ker(T) and R(T).	
Q.7	(a)	(1)	Find the derivative of $f(x,y)=xe^{y} + \cos(xy)$ at the point (2,0)	04
			in the direction of $A=3i-4j$.	
		(2)	Find constants a,b,c so that	
	(b)		V = (x + 2y + az)i + (bx - 3y - z)j + (4x + cy + 2z) is irrotational.	05
	(b)		State Green's theorem and also evaluate the integral $f(a_1 + a_2)da_2$ where G the single	05
			$\oint (6y + x)dx + (y + 2x)dy$ where C: the circle $(x - 2)^2 + (y - 3)^2 = 4.$	
	(c)		$(x - 2)^{2} + (y - 3)^{2} = 4$. Find the flux of $F = yzj + z^{2}k$ outward through the surface S cut from the	05
			cylinder $y^2 + z^2 = 1, z \ge 0$ by the planes x=0 and x=1.	
			-1,2 - 1,2 - 0 of the planes $x = 0$ and $x = 1$.	
